The solver takes in inputs in the form of L A T E X L A T E X L"A"T"E"X\LaTeX expressions and
gives you an appropriate result based on the L A T E X L A T E X L"A"T"E"X\LaTeX query.

  • Each Result contains a plethora of relevant subsections such as
    • Graphs
    • Numerical Results
    • Simplifications
    • Factorizations
    • Alternate Forms etc

  • The subsections that are returned correspond to the query type.
    Querying a Matrix would give you
    • Determinants
    • Eigenvectors
    • Eigenvalues
    • Inverses etc
Examples of queries and their corresponding outputs are given below.

Array


  • Input
    { x x 0 ( e x 1 ) x < 0 x      x 0 e x 1      x < 0 {[x,x >= 0],[(e^(x)-1),x < 0]:}\left\{\begin{array}{ll} x & x \geq 0 \\ \left(e^{x}-1\right) & x<0 \end{array}\right.

    • Graph
      Plot

Integrals


  • Input
    x 4 + 7 x 3 + 5 x d x x 4 + 7 x 3 + 5 x d x int(x^(4)+7)/(x^(3)+5x)dx\int \frac{x^{4}+7}{x^{3}+5 x} d x

    • Result
    x 2 2 + 7 ln ( x ) 5 16 ln ( x 2 + 5 ) 5 x 2 2 + 7 ln x 5 16 ln x 2 + 5 5 (x^(2))/(2)+(7ln ((x)))/(5)-(16 ln ((x^(2)+5)))/(5)\frac{x^{2}}{2} + \frac{7 \ln{\left(x \right)}}{5} - \frac{16 \ln{\left(x^{2} + 5 \right)}}{5}

    • Simplification
    x 4 + 7 x ( x 2 + 5 ) d x x 4 + 7 x x 2 + 5 d x int(x^(4)+7)/(x(x^(2)+5))dx\int \frac{x^{4} + 7}{x \left(x^{2} + 5\right)}\, dx

  • Input
    0 1 x 2 d x 0 1 x 2 d x int_(0)^(1)x^(2)dx\int_0^1 x^2 dx

    • Result
    1 3 1 3 (1)/(3)\frac{1}{3}

  • Input
    x 2 e 2 x d x x 2 e 2 x d x intx^(2)e^(-2x)dx\int x^{2} e^{-2 x} d x

    • Result
    ( 2 x 2 2 x 1 ) e 2 x 4 2 x 2 2 x 1 e 2 x 4 ((-2x^(2)-2x-1)e^(-2x))/(4)\frac{\left(- 2 x^{2} - 2 x - 1\right) e^{- 2 x}}{4}

  • Input
    8 x e 7 x d x 8 x e 7 x d x int8xe^(7x)dx\int 8 x e^{7 x} d x

    • Result
    ( 56 x 8 ) e 7 x 49 56 x 8 e 7 x 49 ((56 x-8)e^(7x))/(49)\frac{\left(56 x - 8\right) e^{7 x}}{49}

    • Simplification
    8 ( 7 x 1 ) e 7 x 49 8 7 x 1 e 7 x 49 (8(7x-1)e^(7x))/(49)\frac{8 \left(7 x - 1\right) e^{7 x}}{49}

  • Input
    x 3 ( x 1 ) ( x 2 ) d x x 3 ( x 1 ) ( x 2 ) d x int(x-3)/((x-1)(x-2))dx\int \frac{x-3}{(x-1)(x-2)} d x

    • Result
    ln ( x 2 ) + 2 ln ( x 1 ) ln x 2 + 2 ln x 1 -ln (x-2)+2ln (x-1)- \ln{\left(x - 2 \right)} + 2 \ln{\left(x - 1 \right)}

    • Simplification
    x 3 ( x 2 ) ( x 1 ) d x x 3 x 2 x 1 d x int(x-3)/((x-2)(x-1))dx\int \frac{x - 3}{\left(x - 2\right) \left(x - 1\right)}\, dx

  • Input
    x 2 x 2 d x x 2 x 2 d x int(x)/(sqrt(2-x^(2)))dx\int \frac{x}{\sqrt{2-x^{2}}} d x

    • Result
    2 x 2 2 x 2 -sqrt(2-x^(2))- \sqrt{2 - x^{2}}

    • Simplification
    x 2 x 2 d x x 2 x 2 d x int(x)/(sqrt(2-x^(2)))dx\int \frac{x}{\sqrt{2 - x^{2}}}\, dx

  • Input
    e x cos 4 x d x e x cos 4 x d x inte^(x)cos 4xdx\int e^{x} \cos 4 x d x

    • Result
    4 e x sin ( 4 x ) 17 + e x cos ( 4 x ) 17 4 e x sin 4 x 17 + e x cos 4 x 17 (4e^(x)sin ((4x)))/(17)+(e^(x)cos ((4x)))/(17)\frac{4 e^{x} \sin{\left(4 x \right)}}{17} + \frac{e^{x} \cos{\left(4 x \right)}}{17}

  • Input
    0 1 0 1 x 2 3 4 x 2 y x d z d y d x 0 1 0 1 x 2 3 4 x 2 y x d z d y d x int_(0)^(1)int_(0)^(1-x^(2))int_(3)^(4-x^(2)-y)xdzdydx\int_{0}^{1} \int_{0}^{1-x^{2}} \int_{3}^{4-x^{2}-y} x d z d y d x

    • Result
    1 12 1 12 (1)/(12)\frac{1}{12}

    • Simplification
    0 1 0 1 x 2 3 x 2 y + 4 x d z d y d x 0 1 0 1 x 2 3 x 2 y + 4 x d z d y d x int_(0)^(1)int_(0)^(1-x^(2))int_(3)^(-x^(2)-y+4)xdzdydx\int\limits_{0}^{1}\int\limits_{0}^{1 - x^{2}}\int\limits_{3}^{- x^{2} - y + 4} x\, dz\, dy\, dx

  • Input
    e x 1 + e 2 x d x = e x 1 + e 2 x d x = int(e^(x))/(1+e^(2x))dx=\int \frac{e^{x}}{1+e^{2 x}} d x=

    • Result
    tan 1 ( e x ) tan 1 e x tan^(-1)(e^(x))\tan^{-1}{\left(e^{x} \right)}

    • Simplification
    1 2 cosh ( x ) d x 1 2 cosh x d x int(1)/(2cosh ((x)))dx\int \frac{1}{2 \cosh{\left(x \right)}}\, dx

  • Input
    ( 4 3 y + 3 y 2 2 y 7 ) d y 4 3 y + 3 y 2 2 y 7 d y int((4)/(3y)+(3)/(y^(2))-(2)/(root(7)(y)))dy\int\left(\frac{4}{3 y}+\frac{3}{y^{2}}-\frac{2}{\sqrt[7]{y}}\right) d y

    • Result
    7 y 6 7 3 + 4 ln ( y ) 3 3 y 7 y 6 7 3 + 4 ln y 3 3 y -(7y^((6)/(7)))/(3)+(4ln ((y)))/(3)-(3)/(y)- \frac{7 y^{\frac{6}{7}}}{3} + \frac{4 \ln{\left(y \right)}}{3} - \frac{3}{y}

    • Simplification
    ( 4 3 y + 3 y 2 2 y 7 ) d y 4 3 y + 3 y 2 2 y 7 d y int((4)/(3y)+(3)/(y^(2))-(2)/(root(7)(y)))dy\int \left(\frac{4}{3 y} + \frac{3}{y^{2}} - \frac{2}{\sqrt[7]{y}}\right)\, dy

  • Input
    1 5 1 + 1 u + 1 u 2 d u 1 5 1 + 1 u + 1 u 2 d u int_(1)^(5)1+(1)/(u)+(1)/(u^(2))du\int_{1}^{5} 1+\frac{1}{u}+\frac{1}{u^{2}} d u

    • Result
    ln ( 5 ) + 24 5 ln 5 + 24 5 ln (5)+(24)/(5)\ln{\left(5 \right)} + \frac{24}{5}

  • Input
    ( 8 e t + 19 t ) d t 8 e t + 19 t d t int(-8e^(t)+19 t)dt\int\left(-8 e^{t}+19 t\right) d t

    • Result
    19 t 2 2 8 e t 19 t 2 2 8 e t (19t^(2))/(2)-8e^(t)\frac{19 t^{2}}{2} - 8 e^{t}

  • Input
    e 3 x + 9 d x e 3 x + 9 d x inte^(3x+9)dx\int e^{3 x+9} d x

    • Result
    e 3 x + 9 3 e 3 x + 9 3 (e^(3x+9))/(3)\frac{e^{3 x + 9}}{3}

Matrices


  • Input
    [ 1 7 3 7 ] [ 1 7 3 7 ] 1 7 3 7 1      7 3      7 [[-1,7],[3,7]][[-1,7],[3,7]]\left[\begin{array}{cc}-1 & 7 \\ 3 & 7\end{array}\right]\left[\begin{array}{rr}-1 & 7 \\ 3 & 7\end{array}\right]

    • Result
    [ 22 42 18 70 ] 22 42 18 70 [[22,42],[18,70]]\left[\begin{matrix}22 & 42\\18 & 70\end{matrix}\right]

    • Inverse
    [ 5 56 3 56 9 392 11 392 ] 5 56 3 56 9 392 11 392 [[(5)/(56),-(3)/(56)],[-(9)/(392),(11)/(392)]]\left[\begin{matrix}\frac{5}{56} & - \frac{3}{56}\\- \frac{9}{392} & \frac{11}{392}\end{matrix}\right]

    • Determinant
    784 784 784784

    • Eigenvectors
    { v λ 1 = [ 42 24 + 6 37 1 ] v λ 2 = [ 42 6 37 24 1 ] v λ 1 = 42 24 + 6 37 1 v λ 2 = 42 6 37 24 1 {[v_(lambda_(1))=[[-(42)/(-24+6sqrt37)],[1]]],[v_(lambda_(2))=[[-(42)/(-6sqrt37-24)],[1]]]:}\left\{ \begin{array} {l} \,v_{\lambda_1}=\left[\begin{matrix}- \frac{42}{-24 + 6 \sqrt{37}}\\1\end{matrix}\right] \\\, v_{\lambda_2}=\left[\begin{matrix}- \frac{42}{- 6 \sqrt{37} - 24}\\1\end{matrix}\right] \end{array} \right.

    • Eigenvalues
    { λ 1 = 46 6 37 λ 2 = 6 37 + 46 λ 1 = 46 6 37 λ 2 = 6 37 + 46 {[lambda_(1)=46-6sqrt37],[lambda_(2)=6sqrt37+46]:}\left\{ \begin{array} {l} \,\lambda_1=46 - 6 \sqrt{37} \\\, \lambda_2=6 \sqrt{37} + 46 \end{array} \right.

    • Characteristic Polynomial
    p ( λ ) = λ 2 92 λ + 784 p λ = λ 2 92 λ + 784 p(lambda)=lambda^(2)-92 lambda+784p{\left(\lambda \right)} = \lambda^{2} - 92 \lambda + 784

    • Dimensions
    ( 2 , 2 ) 2 , 2 (2,2)\left( 2, \ 2\right)

    • Multiplicities
    { μ A ( λ 1 ) = 1 μ A ( λ 2 ) = 1 μ A ( λ 1 ) = 1 μ A ( λ 2 ) = 1 {[mu _(A)(lambda_(1))=1],[mu _(A)(lambda_(2))=1]:}\left\{ \begin{array} {l} \,\mu_A(\lambda_1)=1 \\\, \mu_A(\lambda_2)=1 \end{array} \right.

  • Input
    [ 3 5 3 1 3 5 ] + [ 3 1 0 2 6 2 ] 3      5      3 1      3      5 + 3      1      0 2      6      2 [[-3,-5,-3],[1,3,5]]+[[3,1,0],[-2,6,-2]]\left[\begin{array}{rrr}-3 & -5 & -3 \\ 1 & 3 & 5\end{array}\right]+\left[\begin{array}{rrr}3 & 1 & 0 \\ -2 & 6 & -2\end{array}\right]

    • Result
    [ 0 4 3 1 9 3 ] 0 4 3 1 9 3 [[0,-4,-3],[-1,9,3]]\left[\begin{matrix}0 & -4 & -3\\-1 & 9 & 3\end{matrix}\right]

  • Input
    [ 4 5 6 5 1 4 ] [ 2 4 6 2 3 1 ] 4 5 6 5 1 4 2 4 6 2 3 1 [[4,-5],[-6,5],[-1,4]]-[[2,-4],[-6,2],[3,-1]]\left[\begin{array}{cc}4 & -5 \\ -6 & 5 \\ -1 & 4\end{array}\right]-\left[\begin{array}{cc}2 & -4 \\ -6 & 2 \\ 3 & -1\end{array}\right]

    • Result
    [ 2 1 0 3 4 5 ] 2 1 0 3 4 5 [[2,-1],[0,3],[-4,5]]\left[\begin{matrix}2 & -1\\0 & 3\\-4 & 5\end{matrix}\right]

  • Input
    ( cos θ sin θ sin θ cos θ ) cos θ sin θ sin θ cos θ ([cos theta,sin theta],[-sin theta,cos theta])\left(\begin{array}{cc} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{array}\right)

    • Result
    [ cos ( θ ) sin ( θ ) sin ( θ ) cos ( θ ) ] cos θ sin θ sin θ cos θ [[cos (theta),sin (theta)],[-sin (theta),cos (theta)]]\left[\begin{matrix}\cos{\left(\theta \right)} & \sin{\left(\theta \right)}\\- \sin{\left(\theta \right)} & \cos{\left(\theta \right)}\end{matrix}\right]

    • Inverse
    [ 1 sin 2 ( θ ) cos ( θ ) sin ( θ ) sin ( θ ) cos ( θ ) ] 1 sin 2 θ cos θ sin θ sin θ cos θ [[(1-sin^(2)((theta)))/(cos ((theta))),-sin (theta)],[sin (theta),cos (theta)]]\left[\begin{matrix}\frac{1 - \sin^{2}{\left(\theta \right)}}{\cos{\left(\theta \right)}} & - \sin{\left(\theta \right)}\\\sin{\left(\theta \right)} & \cos{\left(\theta \right)}\end{matrix}\right]

    • Determinant
    sin 2 ( θ ) + cos 2 ( θ ) sin 2 θ + cos 2 θ sin^(2)(theta)+cos^(2)(theta)\sin^{2}{\left(\theta \right)} + \cos^{2}{\left(\theta \right)}

    • Eigenvectors
    { v λ 1 = [ sin ( θ ) ( cos ( θ ) 1 ) ( cos ( θ ) + 1 ) 1 ] v λ 2 = [ sin ( θ ) ( cos ( θ ) 1 ) ( cos ( θ ) + 1 ) 1 ] v λ 1 = sin θ cos θ 1 cos θ + 1 1 v λ 2 = sin θ cos θ 1 cos θ + 1 1 {[v_(lambda_(1))=[[-(sin ((theta)))/(sqrt((cos ((theta))-1)(cos ((theta))+1)))],[1]]],[v_(lambda_(2))=[[(sin ((theta)))/(sqrt((cos ((theta))-1)(cos ((theta))+1)))],[1]]]:}\left\{ \begin{array} {l} \,v_{\lambda_1}=\left[\begin{matrix}- \frac{\sin{\left(\theta \right)}}{\sqrt{\left(\cos{\left(\theta \right)} - 1\right) \left(\cos{\left(\theta \right)} + 1\right)}}\\1\end{matrix}\right] \\\, v_{\lambda_2}=\left[\begin{matrix}\frac{\sin{\left(\theta \right)}}{\sqrt{\left(\cos{\left(\theta \right)} - 1\right) \left(\cos{\left(\theta \right)} + 1\right)}}\\1\end{matrix}\right] \end{array} \right.

    • Eigenvalues
    { λ 1 = ( cos ( θ ) 1 ) ( cos ( θ ) + 1 ) + cos ( θ ) λ 2 = ( cos ( θ ) 1 ) ( cos ( θ ) + 1 ) + cos ( θ ) λ 1 = cos θ 1 cos θ + 1 + cos θ λ 2 = cos θ 1 cos θ + 1 + cos θ {[lambda_(1)=-sqrt((cos ((theta))-1)(cos ((theta))+1))+cos (theta)],[lambda_(2)=sqrt((cos ((theta))-1)(cos ((theta))+1))+cos (theta)]:}\left\{ \begin{array} {l} \,\lambda_1=- \sqrt{\left(\cos{\left(\theta \right)} - 1\right) \left(\cos{\left(\theta \right)} + 1\right)} + \cos{\left(\theta \right)} \\\, \lambda_2=\sqrt{\left(\cos{\left(\theta \right)} - 1\right) \left(\cos{\left(\theta \right)} + 1\right)} + \cos{\left(\theta \right)} \end{array} \right.

    • Characteristic Polynomial
    p ( λ ) = λ 2 2 λ cos ( θ ) + 1 p λ = λ 2 2 λ cos θ + 1 p(lambda)=lambda^(2)-2lambda cos (theta)+1p{\left(\lambda \right)} = \lambda^{2} - 2 \lambda \cos{\left(\theta \right)} + 1

    • Dimensions
    ( 2 , 2 ) 2 , 2 (2,2)\left( 2, \ 2\right)

    • Multiplicities
    { μ A ( λ 1 ) = 1 μ A ( λ 2 ) = 1 μ A ( λ 1 ) = 1 μ A ( λ 2 ) = 1 {[mu _(A)(lambda_(1))=1],[mu _(A)(lambda_(2))=1]:}\left\{ \begin{array} {l} \,\mu_A(\lambda_1)=1 \\\, \mu_A(\lambda_2)=1 \end{array} \right.

Generic


  • Input
    ( 18 m 2 n ) 2 ( 1 6 m n 2 ) = 18 m 2 n 2 1 6 m n 2 = (-18m^(2)n)^(2)**(-(1)/(6)mn^(2))=\left(-18 m^{2} n\right)^{2} *\left(-\frac{1}{6} m n^{2}\right)=

    • Roots
    { m = 0 n = 0 m = 0 n = 0 {[m=0],[n=0]:}\left\{ \begin{array} {l} \,m = 0 \\\, n = 0 \end{array} \right.

    • Result
    54 m 5 n 4 54 m 5 n 4 -54m^(5)n^(4)- 54 m^{5} n^{4}

    • Graph
      Plot

  • Input
    log 6 1 6 log 6 1 6 log_(6)(1)/(6)\log _{6} \frac{1}{6}

    • Result
    1 1 -1-1

  • Input
    ( 7 + 6 i ) ( 3 + i ) ( 7 + 6 i ) ( 3 + i ) (-7+6i)(3+i)(-7+6 i)(3+i)

    • Result
    ( 7 + 6 i ) ( 3 + i ) 7 + 6 i 3 + i (-7+6i)(3+i)\left(-7 + 6 i\right) \left(3 + i\right)

    • Numerical
    27.0 + 11.0 i 27.0 + 11.0 i -27.0+11.0 i-27.0 + 11.0 i

    • Simplification
    27 + 11 i 27 + 11 i -27+11 i-27 + 11 i

  • Input
    252 q 6 k 16 175 q k 4 252 q 6 k 16 175 q k 4 sqrt((252q^(6)k^(16))/(175 qk^(4)))\sqrt{\frac{252 q^{6} k^{16}}{175 q k^{4}}}

    • Result
    6 k 12 q 5 5 6 k 12 q 5 5 (6sqrt(k^(12)q^(5)))/(5)\frac{6 \sqrt{k^{12} q^{5}}}{5}

    • Expansion
    6 7 7 k 12 q 5 35 6 7 7 k 12 q 5 35 6sqrt7(sqrt7sqrt(k^(12)q^(5)))/(35)6 \sqrt{7} \frac{\sqrt{7} \sqrt{k^{12} q^{5}}}{35}

    • Graph
      Plot

  • Input
    160 y 10 2 y 2 160 y 10 2 y 2 (sqrt(160y^(10)))/(sqrt(2y^(2)))\frac{\sqrt{160 y^{10}}}{\sqrt{2 y^{2}}}

    • Result
    4 5 y 10 y 2 4 5 y 10 y 2 (4sqrt5sqrt(y^(10)))/(sqrt(y^(2)))\frac{4 \sqrt{5} \sqrt{y^{10}}}{\sqrt{y^{2}}}

    • Graph
      Plot

  • Input
    z z 2 + 9 z + 14 + 2 z 2 + 9 z + 14 z z 2 + 9 z + 14 + 2 z 2 + 9 z + 14 (z)/(z^(2)+9z+14)+(2)/(z^(2)+9z+14)\frac{z}{z^{2}+9 z+14}+\frac{2}{z^{2}+9 z+14}

    • Result
    z z 2 + 9 z + 14 + 2 z 2 + 9 z + 14 z z 2 + 9 z + 14 + 2 z 2 + 9 z + 14 (z)/(z^(2)+9z+14)+(2)/(z^(2)+9z+14)\frac{z}{z^{2} + 9 z + 14} + \frac{2}{z^{2} + 9 z + 14}

    • Simplification
    1 z + 7 1 z + 7 (1)/(z+7)\frac{1}{z + 7}

    • Expansion
    z ( z 2 + 9 z ) + 14 + 2 ( z 2 + 9 z ) + 14 z z 2 + 9 z + 14 + 2 z 2 + 9 z + 14 (z)/((z^(2)+9z)+14)+(2)/((z^(2)+9z)+14)\frac{z}{\left(z^{2} + 9 z\right) + 14} + \frac{2}{\left(z^{2} + 9 z\right) + 14}

    • Graph
      Plot

  • Input
    14 ! ( 14 4 ) ! 14 ! ( 14 4 ) ! (14!)/((14-4)!)\frac{14 !}{(14-4) !}

    • Factorization
    14 ! ( 4 + 14 ) ! 14 ! 4 + 14 ! (14!)/((-4+14)!)\frac{14!}{\left(-4 + 14\right)!}

    • Result
    24024 24024 2402424024

  • Input
    ( 5 9 i ) ( 5 + 9 i ) ( 5 9 i ) ( 5 + 9 i ) (5-9i)(5+9i)(5-9 i)(5+9 i)

    • Result
    ( 5 9 i ) ( 5 + 9 i ) 5 9 i 5 + 9 i (5-9i)(5+9i)\left(5 - 9 i\right) \left(5 + 9 i\right)

    • Numerical
    106.0 106.0 106.0106.0

    • Simplification
    106 106 106106

  • Input
    125 x 3 216 m 3 125 x 3 216 m 3 125x^(3)-216m^(3)125 x^{3}-216 m^{3}

    • Factorization
    ( 6 m + 5 x ) ( 36 m 2 + 30 m x + 25 x 2 ) 6 m + 5 x 36 m 2 + 30 m x + 25 x 2 (-6m+5x)(36m^(2)+30 mx+25x^(2))\left(- 6 m + 5 x\right) \left(36 m^{2} + 30 m x + 25 x^{2}\right)

    • Roots
    { m = 5 x 6 , m = x ( 5 12 5 3 i 12 ) , m = x ( 5 12 + 5 3 i 12 ) x = 6 m 5 , x = 6 m ( 1 10 3 i 10 ) , x = 6 m ( 1 10 + 3 i 10 ) m = 5 x 6 , m = x 5 12 5 3 i 12 , m = x 5 12 + 5 3 i 12 x = 6 m 5 , x = 6 m 1 10 3 i 10 , x = 6 m 1 10 + 3 i 10 {[m=(5x)/(6)","quad m=x(-(5)/(12)-(5sqrt3i)/(12))","quad m=x(-(5)/(12)+(5sqrt3i)/(12))],[x=(6m)/(5)","quad x=6m(-(1)/(10)-(sqrt3i)/(10))","quad x=6m(-(1)/(10)+(sqrt3i)/(10))]:}\left\{ \begin{array} {l} \,m = \frac{5 x}{6}\,,\quad m = x \left(- \frac{5}{12} - \frac{5 \sqrt{3} i}{12}\right)\,,\quad m = x \left(- \frac{5}{12} + \frac{5 \sqrt{3} i}{12}\right) \\\, x = \frac{6 m}{5}\,,\quad x = 6 m \left(- \frac{1}{10} - \frac{\sqrt{3} i}{10}\right)\,,\quad x = 6 m \left(- \frac{1}{10} + \frac{\sqrt{3} i}{10}\right) \end{array} \right.

    • Result
    216 m 3 + 125 x 3 216 m 3 + 125 x 3 -216m^(3)+125x^(3)- 216 m^{3} + 125 x^{3}

    • Graph
      Plot

  • Input
    ( 5 + 2 i ) 2 ( 5 + 2 i ) 2 (5+2i)^(2)(5+2 i)^{2}

    • Result
    ( 5 + 2 i ) 2 5 + 2 i 2 (5+2i)^(2)\left(5 + 2 i\right)^{2}

    • Numerical
    21.0 + 20.0 i 21.0 + 20.0 i 21.0+20.0 i21.0 + 20.0 i

    • Simplification
    21 + 20 i 21 + 20 i 21+20 i21 + 20 i

  • Input
    x 2 + 3 x 18 x 2 + 3 x 18 x^(2)+3x-18x^{2}+3 x-18

    • Factorization
    ( x 3 ) ( x + 6 ) x 3 x + 6 (x-3)(x+6)\left(x - 3\right) \left(x + 6\right)

    • Roots
    x { 6 , 3 } x 6 , 3 x in{-6,3}x \in \left\{ -6,\, 3\right\}

    • Result
    x 2 + 3 x 18 x 2 + 3 x 18 x^(2)+3x-18x^{2} + 3 x - 18

    • Expansion
    ( x 2 + 3 x ) 18 x 2 + 3 x 18 (x^(2)+3x)-18\left(x^{2} + 3 x\right) - 18

    • Graph
      Plot

  • Input
    2 cos 2 ( 44 ) 1 2 cos 2 44 1 2cos^(2)(44^(@))-12 \cos ^{2}\left(44^{\circ}\right)-1

    • Result
    1 + 2 cos 2 ( 11 π 45 ) 1 + 2 cos 2 11 π 45 -1+2cos^(2)((11 pi)/(45))-1 + 2 \cos^{2}{\left(\frac{11 \pi}{45} \right)}

    • Numerical
    0.034899496702501 0.034899496702501 0.0348994967025010.034899496702501

    • Simplification
    cos ( 22 π 45 ) cos 22 π 45 cos ((22 pi)/(45))\cos{\left(\frac{22 \pi}{45} \right)}

  • Input
    ( 18 ) ÷ 6 × ( 12 ) = ( 18 ) ÷ 6 × ( 12 ) = (-18)-:6xx(-12)=(-18) \div 6 \times(-12)=

    • Result
    36 36 3636

  • Input
    ln ( e 5 6 ) ln e 5 6 ln((e^(5))/(6))\ln \left(\frac{e^{5}}{6}\right)

    • Result
    ln ( e 5 6 ) ln e 5 6 ln ((e^(5))/(6))\ln{\left(\frac{e^{5}}{6} \right)}

    • Numerical
    3.20824053077195 3.20824053077195 3.208240530771953.20824053077195

    • Simplification
    5 ln ( 6 ) 5 ln 6 5-ln (6)5 - \ln{\left(6 \right)}

  • Input
    a 2 + b 2 + 2 a b a 2 + b 2 + 2 a b a^(2)+b^(2)+2aba^2 + b^2 + 2 a b

    • Factorization
    ( a + b ) 2 a + b 2 (a+b)^(2)\left(a + b\right)^{2}

    • Roots
    { a = b b = a a = b b = a {[a=-b],[b=-a]:}\left\{ \begin{array} {l} \,a = - b \\\, b = - a \end{array} \right.

    • Result
    a 2 + 2 a b + b 2 a 2 + 2 a b + b 2 a^(2)+2ab+b^(2)a^{2} + 2 a b + b^{2}

    • Expansion
    2 a b + ( a 2 + b 2 ) 2 a b + a 2 + b 2 2ab+(a^(2)+b^(2))2 a b + \left(a^{2} + b^{2}\right)

    • Graph
      Plot

  • Input
    ( 6 5 ) 4 × ( 6 5 ) 2 = 6 5 4 × 6 5 2 = ((6)/(5))^(4)xx((6)/(5))^(2)=\left(\frac{6}{5}\right)^{4} \times\left(\frac{6}{5}\right)^{2}=

    • Result
    46656 15625 46656 15625 (46656)/(15625)\frac{46656}{15625}

    • Numerical
    2.985984 2.985984 2.9859842.985984

  • Input
    1 2 + 33 2 1 2 + 33 2 -(1)/(2)+(sqrt33)/(2)-\frac{1}{2}+\frac{\sqrt{33}}{2}

    • Factorization
    1 + 33 2 1 + 33 2 (-1+sqrt33)/(2)\frac{-1 + \sqrt{33}}{2}

    • Result
    1 2 + 33 2 1 2 + 33 2 -(1)/(2)+(sqrt33)/(2)- \frac{1}{2} + \frac{\sqrt{33}}{2}

    • Numerical
    2.37228132326901 2.37228132326901 2.372281323269012.37228132326901

  • Input
    f ( x ) = 2 x 3 + x f ( x ) = 2 x 3 + x f(x)=(2x)/(3+x)f(x)=\frac{2 x}{3+x}

    • Roots
    x = 0 x = 0 x=0x = 0

    • Result
    2 x x + 3 2 x x + 3 (2x)/(x+3)\frac{2 x}{x + 3}

    • Graph
      Plot

  • Input
    x 2 + 14 x 20 x 2 + 14 x 20 -x^(2)+14 x-20-x^{2}+14 x-20

    • Roots
    x { 7 29 , 29 + 7 } x 7 29 , 29 + 7 x in{7-sqrt29,sqrt29+7}x \in \left\{ 7 - \sqrt{29},\, \sqrt{29} + 7\right\}

    • Result
    x 2 + 14 x 20 x 2 + 14 x 20 -x^(2)+14 x-20- x^{2} + 14 x - 20

    • Expansion
    ( x 2 + 14 x ) 20 x 2 + 14 x 20 (-x^(2)+14 x)-20\left(- x^{2} + 14 x\right) - 20

    • Graph
      Plot

  • Input
    π 4 π 4 (pi)/(4)\frac{\pi}{4}

    • Numerical
    0.785398163397448 0.785398163397448 0.7853981633974480.785398163397448

  • Input
    2 x 2 18 x 4 + 2 x 3 3 x 2 x 2 11 x + 10 x 2 13 x + 30 2 x 2 18 x 4 + 2 x 3 3 x 2 x 2 11 x + 10 x 2 13 x + 30 (2x^(2)-18)/(x^(4)+2x^(3)-3x^(2))*(x^(2)-11 x+10)/(x^(2)-13 x+30)\frac{2 x^{2}-18}{x^{4}+2 x^{3}-3 x^{2}} \cdot \frac{x^{2}-11 x+10}{x^{2}-13 x+30}

    • Result
    ( 2 x 2 18 ) ( x 2 11 x + 10 ) ( x 2 13 x + 30 ) ( x 4 + 2 x 3 3 x 2 ) 2 x 2 18 x 2 11 x + 10 x 2 13 x + 30 x 4 + 2 x 3 3 x 2 ((2x^(2)-18)(x^(2)-11 x+10))/((x^(2)-13 x+30)(x^(4)+2x^(3)-3x^(2)))\frac{\left(2 x^{2} - 18\right) \left(x^{2} - 11 x + 10\right)}{\left(x^{2} - 13 x + 30\right) \left(x^{4} + 2 x^{3} - 3 x^{2}\right)}

    • Simplification
    2 x 2 2 x 2 (2)/(x^(2))\frac{2}{x^{2}}

    • Expansion
    2 x 4 x 6 11 x 5 + x 4 + 99 x 3 90 x 2 22 x 3 x 6 11 x 5 + x 4 + 99 x 3 90 x 2 + 2 x 2 x 6 11 x 5 + x 4 + 99 x 3 90 x 2 + 198 x x 6 11 x 5 + x 4 + 99 x 3 90 x 2 180 x 6 11 x 5 + x 4 + 99 x 3 90 x 2 2 x 4 x 6 11 x 5 + x 4 + 99 x 3 90 x 2 22 x 3 x 6 11 x 5 + x 4 + 99 x 3 90 x 2 + 2 x 2 x 6 11 x 5 + x 4 + 99 x 3 90 x 2 + 198 x x 6 11 x 5 + x 4 + 99 x 3 90 x 2 180 x 6 11 x 5 + x 4 + 99 x 3 90 x 2 (2x^(4))/(x^(6)-11x^(5)+x^(4)+99x^(3)-90x^(2))-(22x^(3))/(x^(6)-11x^(5)+x^(4)+99x^(3)-90x^(2))+(2x^(2))/(x^(6)-11x^(5)+x^(4)+99x^(3)-90x^(2))+(198 x)/(x^(6)-11x^(5)+x^(4)+99x^(3)-90x^(2))-(180)/(x^(6)-11x^(5)+x^(4)+99x^(3)-90x^(2))\frac{2 x^{4}}{x^{6} - 11 x^{5} + x^{4} + 99 x^{3} - 90 x^{2}} - \frac{22 x^{3}}{x^{6} - 11 x^{5} + x^{4} + 99 x^{3} - 90 x^{2}} + \frac{2 x^{2}}{x^{6} - 11 x^{5} + x^{4} + 99 x^{3} - 90 x^{2}} + \frac{198 x}{x^{6} - 11 x^{5} + x^{4} + 99 x^{3} - 90 x^{2}} - \frac{180}{x^{6} - 11 x^{5} + x^{4} + 99 x^{3} - 90 x^{2}}

    • Graph
      Plot

  • Input
    x 2 + y 3 x 2 + y 3 x^(2)+y^(3)x^2 + y^3

    • Roots
    { x = y 3 , x = y 3 y = x 2 3 , y = x 2 3 2 3 i x 2 3 2 , y = x 2 3 2 + 3 i x 2 3 2 x = y 3 , x = y 3 y = x 2 3 , y = x 2 3 2 3 i x 2 3 2 , y = x 2 3 2 + 3 i x 2 3 2 {[x=-sqrt(-y^(3))","quad x=sqrt(-y^(3))],[y=root(3)(-x^(2))","quad y=-(root(3)(-x^(2)))/(2)-(sqrt3iroot(3)(-x^(2)))/(2)","quad y=-(root(3)(-x^(2)))/(2)+(sqrt3iroot(3)(-x^(2)))/(2)]:}\left\{ \begin{array} {l} \,x = - \sqrt{- y^{3}}\,,\quad x = \sqrt{- y^{3}} \\\, y = \sqrt[3]{- x^{2}}\,,\quad y = - \frac{\sqrt[3]{- x^{2}}}{2} - \frac{\sqrt{3} i \sqrt[3]{- x^{2}}}{2}\,,\quad y = - \frac{\sqrt[3]{- x^{2}}}{2} + \frac{\sqrt{3} i \sqrt[3]{- x^{2}}}{2} \end{array} \right.

    • Result
    x 2 + y 3 x 2 + y 3 x^(2)+y^(3)x^{2} + y^{3}

    • Graph
      Plot

  • Input
    x 2 + y 2 x 2 + y 2 x^(2)+y^(2)x^2 + y^2

    • Roots
    { x = i y , x = i y y = i x , y = i x x = i y , x = i y y = i x , y = i x {[x=-iy","quad x=iy],[y=-ix","quad y=ix]:}\left\{ \begin{array} {l} \,x = - i y\,,\quad x = i y \\\, y = - i x\,,\quad y = i x \end{array} \right.

    • Result
    x 2 + y 2 x 2 + y 2 x^(2)+y^(2)x^{2} + y^{2}

    • Graph
      Plot

  • Input
    8 / ( 2 + 360 ) 8 / ( 2 + 360 ) 8//(2+360)8 / (2 + 360)

    • Result
    4 181 4 181 (4)/(181)\frac{4}{181}

    • Numerical
    0.0220994475138122 0.0220994475138122 0.02209944751381220.0220994475138122

    • Expansion
    8 2 + 360 8 2 + 360 (8)/(2+360)\frac{8}{2 + 360}

  • Input
    0.3 10 2 + 0.8 c 1 + 0.3 10 2 0.8 c c 2 0.3 10 2 + 0.8 c 1 + 0.3 10 2 0.8 c c 2 (0.3*10^(-2)+0.8 c)/(1+(0.3*10^(-2)*0.8 c)/(c^(2)))\frac{0.3\cdot10^{-2} + 0.8c}{1 + \frac{0.3\cdot10^{-2}\cdot 0.8c}{c^2}}

    • Factorization
    0.8 c ( 1.0 c + 0.00375 ) 1.0 c + 0.0024 0.8 c 1.0 c + 0.00375 1.0 c + 0.0024 (0.8 c(1.0 c+0.00375))/(1.0 c+0.0024)\frac{0.8 c \left(1.0 c + 0.00375\right)}{1.0 c + 0.0024}

    • Roots
    c = 0.00375 c = 0.00375 c=-0.00375c = -0.00375

    • Result
    0.8 c + 0.003 1 + 0.0024 c 0.8 c + 0.003 1 + 0.0024 c (0.8 c+0.003)/(1+(0.0024 )/(c))\frac{0.8 c + 0.003}{1 + \frac{0.0024}{c}}

    • Simplification
    c ( 0.8 c + 0.003 ) c + 0.0024 c 0.8 c + 0.003 c + 0.0024 (c(0.8 c+0.003))/(c+0.0024)\frac{c \left(0.8 c + 0.003\right)}{c + 0.0024}

    • Expansion
    0.8 c 1 + 0.0024 c + 0.003 1 + 0.0024 c 0.8 c 1 + 0.0024 c + 0.003 1 + 0.0024 c (0.8 c)/(1+(0.0024 )/(c))+(0.003)/(1+(0.0024 )/(c))\frac{0.8 c}{1 + \frac{0.0024}{c}} + \frac{0.003}{1 + \frac{0.0024}{c}}

    • Graph
      Plot

  • Input
    0.8 c + 0.3 0.24 c + 1 0.8 c + 0.3 0.24 c + 1 (0.8 c+0.3)/((0.24 )/(c)+1)\frac{0.8 c+0.3}{\frac{0.24}{c}+1}

    • Factorization
    0.8 c ( 1.0 c + 0.375 ) 1.0 c + 0.24 0.8 c 1.0 c + 0.375 1.0 c + 0.24 (0.8 c(1.0 c+0.375))/(1.0 c+0.24)\frac{0.8 c \left(1.0 c + 0.375\right)}{1.0 c + 0.24}

    • Roots
    c = 0.375 c = 0.375 c=-0.375c = -0.375

    • Result
    0.8 c + 0.3 1 + 0.24 c 0.8 c + 0.3 1 + 0.24 c (0.8 c+0.3)/(1+(0.24 )/(c))\frac{0.8 c + 0.3}{1 + \frac{0.24}{c}}

    • Simplification
    c ( 0.8 c + 0.3 ) c + 0.24 c 0.8 c + 0.3 c + 0.24 (c(0.8 c+0.3))/(c+0.24)\frac{c \left(0.8 c + 0.3\right)}{c + 0.24}

    • Expansion
    0.8 c 1 + 0.24 c + 0.3 1 + 0.24 c 0.8 c 1 + 0.24 c + 0.3 1 + 0.24 c (0.8 c)/(1+(0.24 )/(c))+(0.3)/(1+(0.24 )/(c))\frac{0.8 c}{1 + \frac{0.24}{c}} + \frac{0.3}{1 + \frac{0.24}{c}}

    • Graph
      Plot

  • Input
    a 2 + b 3 a 2 + b 3 a^(2)+b^(3)a^2 + b^3

    • Roots
    { a = b 3 , a = b 3 b = a 2 3 , b = a 2 3 2 3 i a 2 3 2 , b = a 2 3 2 + 3 i a 2 3 2 a = b 3 , a = b 3 b = a 2 3 , b = a 2 3 2 3 i a 2 3 2 , b = a 2 3 2 + 3 i a 2 3 2 {[a=-sqrt(-b^(3))","quad a=sqrt(-b^(3))],[b=root(3)(-a^(2))","quad b=-(root(3)(-a^(2)))/(2)-(sqrt3iroot(3)(-a^(2)))/(2)","quad b=-(root(3)(-a^(2)))/(2)+(sqrt3iroot(3)(-a^(2)))/(2)]:}\left\{ \begin{array} {l} \,a = - \sqrt{- b^{3}}\,,\quad a = \sqrt{- b^{3}} \\\, b = \sqrt[3]{- a^{2}}\,,\quad b = - \frac{\sqrt[3]{- a^{2}}}{2} - \frac{\sqrt{3} i \sqrt[3]{- a^{2}}}{2}\,,\quad b = - \frac{\sqrt[3]{- a^{2}}}{2} + \frac{\sqrt{3} i \sqrt[3]{- a^{2}}}{2} \end{array} \right.

    • Result
    a 2 + b 3 a 2 + b 3 a^(2)+b^(3)a^{2} + b^{3}

    • Graph
      Plot

  • Input
    sin ( x ) × sin ( y ) sin ( x ) × sin ( y ) sin(x)xx sin(y)\sin(x) \times \sin(y)

    • Roots
    { x = 0 , x = π y = 0 , y = π x = 0 , x = π y = 0 , y = π {[x=0","quad x=pi],[y=0","quad y=pi]:}\left\{ \begin{array} {l} \,x = 0\,,\quad x = \pi \\\, y = 0\,,\quad y = \pi \end{array} \right.

    • Result
    sin ( x ) sin ( y ) sin x sin y sin (x)sin (y)\sin{\left(x \right)} \sin{\left(y \right)}

    • Graph
      Plot

  • Input
    sin ( x ) sin ( y ) sin ( x ) sin ( y ) sin(x)*sin(y)\sin (x) \cdot \sin (y)

    • Roots
    { x = 0 , x = π y = 0 , y = π x = 0 , x = π y = 0 , y = π {[x=0","quad x=pi],[y=0","quad y=pi]:}\left\{ \begin{array} {l} \,x = 0\,,\quad x = \pi \\\, y = 0\,,\quad y = \pi \end{array} \right.

    • Result
    sin ( x ) sin ( y ) sin x sin y sin (x)sin (y)\sin{\left(x \right)} \sin{\left(y \right)}

    • Graph
      Plot

  • Input
    x 2 x 2 x^(2)x^{2}

    • Roots
    x = 0 x = 0 x=0x = 0

    • Graph
      Plot

  • Input
    x 2 / 3 + y 2 / 3 x 2 / 3 + y 2 / 3 x^(2//3)+y^(2//3)x^{2 / 3}+y^{2 / 3}

    • Roots
    { x = i y , x = i y y = i x , y = i x x = i y , x = i y y = i x , y = i x {[x=-iy","quad x=iy],[y=-ix","quad y=ix]:}\left\{ \begin{array} {l} \,x = - i y\,,\quad x = i y \\\, y = - i x\,,\quad y = i x \end{array} \right.

    • Result
    x 2 3 + y 2 3 x 2 3 + y 2 3 x^((2)/(3))+y^((2)/(3))x^{\frac{2}{3}} + y^{\frac{2}{3}}

    • Graph
      Plot

  • Input
    f ( x ) = { x e 2 x si x < 0 ln ( x + 1 ) x + 1 si x 0 f ( x ) = x e 2 x  si  x < 0 ln ( x + 1 ) x + 1  si  x 0 f(x)={[xe^(2x)," si ",x < 0],[(ln(x+1))/(x+1)," si ",x >= 0]:}f(x)=\left\{\begin{array}{ccc} x e^{2 x} & \text { si } & x<0 \\ \frac{\ln (x+1)}{x+1} & \text { si } & x \geq 0 \end{array}\right.

    • Roots
    x = 0 x = 0 x=0x = 0

    • Graph
      Plot

Concrete


  • Input
    n = 1 7 2 ( 2 ) n 1 n = 1 7 2 ( 2 ) n 1 sum_(n=1)^(7)2(-2)^(n-1)\sum_{n=1}^{7} 2(-2)^{n-1}

    • Result
    86 86 8686

    • Simplification
    n = 1 7 ( 1 ) n 2 n n = 1 7 1 n 2 n -sum_(n=1)^(7)(-1)^(n)2^(n)- \sum_{n=1}^{7} \left(-1\right)^{n} 2^{n}

Relationals


  • Input
    ( u + 5 ) ( u + 3 ) 1 ( u + 5 ) ( u + 3 ) 1 (u+5)(u+3) <= -1(u+5)(u+3) \leq-1

    • Solution
    u = 4 u = 4 u=-4u = -4

    • Simplification
    u 2 + 8 u 16 u 2 + 8 u 16 u^(2)+8u <= -16u^{2} + 8 u \leq -16

    • Graph
      Plot

  • Input
    x y 10 x y 10 x-y <= 10x - y \leq 10

    • Solution
    { x y + 10 < x y x 10 y < x y + 10 < x y x 10 y < {[x <= y+10^^-oo < x],[y >= x-10^^y < oo]:}\left\{ \begin{array} {l} \,x \leq y + 10 \wedge -\infty < x \\\, y \geq x - 10 \wedge y < \infty \end{array} \right.

    • Graph
      Plot

  • Input
    x 2 + y 3 4 x 2 + y 3 4 x^(2)+y^(3) >= 4x^{2}+y^{3} \geq 4

    • Graph
      Plot

  • Input
    x 4 + y 6 3 x 4 + y 6 3 x^(4)+y^(6) <= 3x^4 + y^6 \leq 3

    • Graph
      Plot

  • Input
    x 2 + y 3 3 x 2 + y 3 3 x^(2)+y^(3) <= 3x^2 + y^3 \leq 3

    • Graph
      Plot

  • Input
    x + y 10 x + y 10 x+y <= 10x + y \leq 10

    • Solution
    { x 10 y < x y 10 x < y x 10 y < x y 10 x < y {[x <= 10-y^^-oo < x],[y <= 10-x^^-oo < y]:}\left\{ \begin{array} {l} \,x \leq 10 - y \wedge -\infty < x \\\, y \leq 10 - x \wedge -\infty < y \end{array} \right.

    • Graph
      Plot

  • Input
    x 2 + y 2 20 x 2 + y 2 20 x^(2)+y^(2) <= 20x^2 + y^2 \leq 20

    • Graph
      Plot

  • Input
    x 2 + y 2 10 x 2 + y 2 10 x^(2)+y^(2) <= 10x^{2}+y^{2} \leq 10

    • Graph
      Plot

  • Input
    x 2 y 2 10 x 2 y 2 10 x^(2)-y^(2) <= 10x^{2}-y^{2} \leq 10

    • Graph
      Plot

Equation


  • Input
    x 2 3 4 x 1 3 5 = 0 x 2 3 4 x 1 3 5 = 0 x^((2)/(3))-4x^((1)/(3))-5=0x^{\frac{2}{3}}-4 x^{\frac{1}{3}}-5=0

    • Solution
    x = 125 x = 125 x=125x = 125

    • Simplification
    x 2 3 + 4 x 3 + 5 = 0 x 2 3 + 4 x 3 + 5 = 0 -x^((2)/(3))+4root(3)(x)+5=0- x^{\frac{2}{3}} + 4 \sqrt[3]{x} + 5 = 0

    • Graph
      Plot

  • Input
    | x 2 6 6 x 0 5 1 6 | = 108 x 2 6 6 x 0 5 1 6 = 108 |[x,2,6],[6,x,0],[5,1,-6]|=108\left|\begin{array}{ccc}x & 2 & 6 \\ 6 & x & 0 \\ 5 & 1 & -6\end{array}\right|=108

    • Solution
    x { 5 , 0 } x 5 , 0 x in{-5,0}x \in \left\{ -5,\, 0\right\}

    • Simplification
    x 2 + 5 x = 0 x 2 + 5 x = 0 x^(2)+5x=0x^{2} + 5 x = 0

    • Graph
      Plot

  • Input
    x 2 + 2 x + 1 = 0 x 2 + 2 x + 1 = 0 x^(2)+2x+1=0x ^ 2 + 2 x + 1 = 0

    • Solution
    x = 1 x = 1 x=-1x = -1

    • Simplification
    x 2 + 2 x = 1 x 2 + 2 x = 1 x^(2)+2x=-1x^{2} + 2 x = -1

    • Graph
      Plot

  • Input
    cot ( 180 θ ) = cot θ cot 180 θ = cot θ cot(180^(@)-theta)=cot theta\cot \left(180^{\circ}-\theta\right)=\cot \theta

    • Solution
    θ = π 2 θ = π 2 theta=(pi)/(2)\theta = \frac{\pi}{2}

    • Simplification
    cot ( θ ) = cot ( θ ) cot θ = cot θ cot (theta)=-cot (theta)\cot{\left(\theta \right)} = - \cot{\left(\theta \right)}

    • Graph
      Plot

  • Input
    9 x 3 x 2 = 81 2 9 x 3 x 2 = 81 2 9^(x)*3^(x^(2))=81^(2)9^{x} \cdot 3^{x^{2}}=81^{2}

    • Solution
    x { 4 , 2 } x 4 , 2 x in{-4,2}x \in \left\{ -4,\, 2\right\}

    • Simplification
    3 x ( x + 2 ) = 6561 3 x x + 2 = 6561 3^(x(x+2))=65613^{x \left(x + 2\right)} = 6561

    • Graph
      Plot

  • Input
    x + 73 = x + 1 x + 73 = x + 1 sqrt(x+73)=x+1\sqrt{x+73}=x+1

    • Solution
    x = 8 x = 8 x=8x = 8

    • Simplification
    x + 1 = x + 73 x + 1 = x + 73 x+1=sqrt(x+73)x + 1 = \sqrt{x + 73}

    • Graph
      Plot

  • Input
    ( 5 2 ) = 2 y ( 5 2 ) = 2 y ((5)/(2))=2y\binom{5}{2} = 2 y

    • Solution
    y = 5 y = 5 y=5y = 5

    • Graph
      Plot

  • Input
    0 1 x 2 d x = 2 y 0 1 x 2 d x = 2 y int_(0)^(1)x^(2)dx=2y\int_0^1 x^2 dx = 2 y

    • Solution
    y = 1 6 y = 1 6 y=(1)/(6)y = \frac{1}{6}

    • Simplification
    y = 0 1 x 2 d x 2 y = 0 1 x 2 d x 2 y=(int_(0)^(1)x^(2)dx)/(2)y = \frac{\int\limits_{0}^{1} x^{2}\, dx}{2}

    • Graph
      Plot

  • Input
    5 7 x + 2 = 2 x 3 5 7 x + 2 = 2 x 3 5^(7x+2)=2^(x-3)5^{7 x+2}=2^{x-3}

    • Solution
    x = ln ( 200 1 ln ( 2 78125 ) ) x = ln 200 1 ln 2 78125 x=ln (200^((1)/(ln (((2)/(78125))))))x = \ln{\left(200^{\frac{1}{\ln{\left(\frac{2}{78125} \right)}}} \right)}

    • Simplification
    2 x 3 = 5 7 x + 2 2 x 3 = 5 7 x + 2 2^(x-3)=5^(7x+2)2^{x - 3} = 5^{7 x + 2}

    • Graph
      Plot

  • Input
    sin ( 4 π x ) = 3 2 sin ( 4 π x ) = 3 2 sin(4pi x)=(sqrt3)/(2)\sin (4 \pi x)=\frac{\sqrt{3}}{2}

    • Solution
    x { 1 12 , 1 6 } x 1 12 , 1 6 x in{(1)/(12),(1)/(6)}x \in \left\{ \frac{1}{12},\, \frac{1}{6}\right\}

    • Simplification
    sin ( 4 π x ) = 3 2 sin 4 π x = 3 2 sin (4pi x)=(sqrt3)/(2)\sin{\left(4 \pi x \right)} = \frac{\sqrt{3}}{2}

    • Graph
      Plot

  • Input
    log x 64 = 3 log x 64 = 3 log_(x)64=3\log _{x} 64=3

    • Solution
    x = 4 x = 4 x=4x = 4

    • Simplification
    log x ( 64 ) = 3 log x 64 = 3 log_(x)(64)=3\log_{x} {\left(64 \right)} = 3

    • Graph
      Plot

  • Input
    4 3 x 3 x = 2 4 3 x 3 x = 2 (sqrt(4-3x))/(sqrt(3x))=2\frac{\sqrt{4-3 x}}{\sqrt{3 x}}=2

    • Solution
    x = 4 15 x = 4 15 x=(4)/(15)x = \frac{4}{15}

    • Simplification
    12 9 x 3 x = 2 12 9 x 3 x = 2 (sqrt(12-9x))/(3sqrtx)=2\frac{\sqrt{12 - 9 x}}{3 \sqrt{x}} = 2

    • Graph
      Plot

  • Input
    log 49 7 3 = x log 49 7 3 = x log_(49)root(3)(7)=x\log _{49} \sqrt[3]{7}=x

    • Solution
    x = 1 6 x = 1 6 x=(1)/(6)x = \frac{1}{6}

    • Graph
      Plot

  • Input
    x 2 = 4 x 2 = 4 x^(2)=4x ^ 2 = 4

    • Solution
    x { 2 , 2 } x 2 , 2 x in{-2,2}x \in \left\{ -2,\, 2\right\}

    • Simplification
    x 2 = 4 x 2 = 4 x^(2)=4x^{2} = 4

    • Graph
      Plot

  • Input
    3 4 = 3 x 3 4 = 3 x (3)/(4)=3x\frac{3}{4} = 3 x

    • Solution
    x = 1 4 x = 1 4 x=(1)/(4)x = \frac{1}{4}

    • Graph
      Plot

  • Input
    3 a + 2 + 4 a 1 = 0 3 a + 2 + 4 a 1 = 0 (3)/(a+2)+(4)/(a-1)=0\frac{3}{a+2}+\frac{4}{a-1}=0

    • Solution
    a = 5 7 a = 5 7 a=-(5)/(7)a = - \frac{5}{7}

    • Simplification
    7 a + 5 ( a 1 ) ( a + 2 ) = 0 7 a + 5 a 1 a + 2 = 0 (7a+5)/((a-1)(a+2))=0\frac{7 a + 5}{\left(a - 1\right) \left(a + 2\right)} = 0

    • Graph
      Plot

  • Input
    y = 2 x 3 + x y = 2 x 3 + x y=(2x)/(3+x)y=\frac{2 x}{3+x}

    • Solution
    { x = 3 y y 2 y = 2 x x + 3 x = 3 y y 2 y = 2 x x + 3 {[x=-(3y)/(y-2)],[y=(2x)/(x+3)]:}\left\{ \begin{array} {l} \,x = - \frac{3 y}{y - 2} \\\, y = \frac{2 x}{x + 3} \end{array} \right.

    • Simplification
    y = 2 x x + 3 y = 2 x x + 3 y=(2x)/(x+3)y = \frac{2 x}{x + 3}

    • Graph
      Plot

  • Input
    x + y = 10 x + y = 10 x+y=10x + y = 10

    • Solution
    { x = 10 y y = 10 x x = 10 y y = 10 x {[x=10-y],[y=10-x]:}\left\{ \begin{array} {l} \,x = 10 - y \\\, y = 10 - x \end{array} \right.

    • Graph
      Plot

  • Input
    y 2 + x 2 = z 2 y 2 + x 2 = z 2 y^(2)+x^(2)=z^(2)y^{2}+x^{2}=z^{2}

    • Solution
    { x = y 2 + z 2 , x = y 2 + z 2 y = x 2 + z 2 , y = x 2 + z 2 z = x 2 + y 2 , z = x 2 + y 2 x = y 2 + z 2 , x = y 2 + z 2 y = x 2 + z 2 , y = x 2 + z 2 z = x 2 + y 2 , z = x 2 + y 2 {[x=-sqrt(-y^(2)+z^(2))","quad x=sqrt(-y^(2)+z^(2))],[y=-sqrt(-x^(2)+z^(2))","quad y=sqrt(-x^(2)+z^(2))],[z=-sqrt(x^(2)+y^(2))","quad z=sqrt(x^(2)+y^(2))]:}\left\{ \begin{array} {l} \,x = - \sqrt{- y^{2} + z^{2}}\,,\quad x = \sqrt{- y^{2} + z^{2}} \\\, y = - \sqrt{- x^{2} + z^{2}}\,,\quad y = \sqrt{- x^{2} + z^{2}} \\\, z = - \sqrt{x^{2} + y^{2}}\,,\quad z = \sqrt{x^{2} + y^{2}} \end{array} \right.

    • Simplification
    z 2 = x 2 + y 2 z 2 = x 2 + y 2 z^(2)=x^(2)+y^(2)z^{2} = x^{2} + y^{2}

  • Input
    x 2 + y 2 = 100 x 2 + y 2 = 100 x^(2)+y^(2)=100x^2 + y^2 = 100

    • Solution
    { x = 100 y 2 , x = 100 y 2 y = 100 x 2 , y = 100 x 2 x = 100 y 2 , x = 100 y 2 y = 100 x 2 , y = 100 x 2 {[x=-sqrt(100-y^(2))","quad x=sqrt(100-y^(2))],[y=-sqrt(100-x^(2))","quad y=sqrt(100-x^(2))]:}\left\{ \begin{array} {l} \,x = - \sqrt{100 - y^{2}}\,,\quad x = \sqrt{100 - y^{2}} \\\, y = - \sqrt{100 - x^{2}}\,,\quad y = \sqrt{100 - x^{2}} \end{array} \right.

    • Simplification
    x 2 + y 2 = 100 x 2 + y 2 = 100 x^(2)+y^(2)=100x^{2} + y^{2} = 100

    • Graph
      Plot

  • Input
    x 2 + y 3 = 100 x 2 + y 3 = 100 x^(2)+y^(3)=100x^2 + y^3 = 100

    • Solution
    { x = 100 y 3 , x = 100 y 3 y = 100 x 2 3 , y = 100 x 2 3 2 3 i 100 x 2 3 2 , y = 100 x 2 3 2 + 3 i 100 x 2 3 2 x = 100 y 3 , x = 100 y 3 y = 100 x 2 3 , y = 100 x 2 3 2 3 i 100 x 2 3 2 , y = 100 x 2 3 2 + 3 i 100 x 2 3 2 {[x=-sqrt(100-y^(3))","quad x=sqrt(100-y^(3))],[y=root(3)(100-x^(2))","quad y=-(root(3)(100-x^(2)))/(2)-(sqrt3iroot(3)(100-x^(2)))/(2)","quad y=-(root(3)(100-x^(2)))/(2)+(sqrt3iroot(3)(100-x^(2)))/(2)]:}\left\{ \begin{array} {l} \,x = - \sqrt{100 - y^{3}}\,,\quad x = \sqrt{100 - y^{3}} \\\, y = \sqrt[3]{100 - x^{2}}\,,\quad y = - \frac{\sqrt[3]{100 - x^{2}}}{2} - \frac{\sqrt{3} i \sqrt[3]{100 - x^{2}}}{2}\,,\quad y = - \frac{\sqrt[3]{100 - x^{2}}}{2} + \frac{\sqrt{3} i \sqrt[3]{100 - x^{2}}}{2} \end{array} \right.

    • Simplification
    x 2 + y 3 = 100 x 2 + y 3 = 100 x^(2)+y^(3)=100x^{2} + y^{3} = 100

    • Graph
      Plot

  • Input
    u = 0.3 10 2 + 2.4 10 8 1 + ( 0.3 10 2 ) ( 2.66851 10 9 ) u = 0.3 10 2 + 2.4 10 8 1 + ( 0.3 10 2 ) ( 2.66851 10 9 ) u=(0.3*10^(-2)+2.4*10^(8))/(1+(0.3*10^(-2))*(2.66851*10^(-9)))u=\frac{0.3 \cdot 10^{-2} + 2.4\cdot10^8}{1+ (0.3 \cdot 10^{-2}) \cdot (2.66851\cdot10^{-9})}

    • Solution
    u = 240000000.001079 u = 240000000.001079 u=240000000.001079u = 240000000.001079

    • Graph
      Plot

  • Input
    u = u + v 1 + u v / c 2 u = u + v 1 + u v / c 2 u=(u^(')+v)/(1+u^(')v//c^(2))u=\frac{u^{\prime}+v}{1+u^{\prime} v / c^{2}}

    • Solution
    { c = u u v u + u + v , c = u u v u + u + v u = c 2 ( u + v ) c 2 + u v u = c 2 ( u v ) c 2 u v v = c 2 ( u u ) c 2 u u c = u u v u + u + v , c = u u v u + u + v u = c 2 u + v c 2 + u v u = c 2 u v c 2 u v v = c 2 u u c 2 u u {[c=-sqrt((uu^(')v)/(-u+u^(')+v))","quad c=sqrt((uu^(')v)/(-u+u^(')+v))],[u=(c^(2)(u^(')+v))/(c^(2)+u^(')v)],[u^(')=(c^(2)(u-v))/(c^(2)-uv)],[v=(c^(2)(u-u^(')))/(c^(2)-uu^('))]:}\left\{ \begin{array} {l} \,c = - \sqrt{\frac{u u^{\prime} v}{- u + u^{\prime} + v}}\,,\quad c = \sqrt{\frac{u u^{\prime} v}{- u + u^{\prime} + v}} \\\, u = \frac{c^{2} \left(u^{\prime} + v\right)}{c^{2} + u^{\prime} v} \\\, u^{\prime} = \frac{c^{2} \left(u - v\right)}{c^{2} - u v} \\\, v = \frac{c^{2} \left(u - u^{\prime}\right)}{c^{2} - u u^{\prime}} \end{array} \right.

    • Simplification
    u = c 2 ( u + v ) c 2 + u v u = c 2 u + v c 2 + u v u=(c^(2)(u^(')+v))/(c^(2)+u^(')v)u = \frac{c^{2} \left(u^{\prime} + v\right)}{c^{2} + u^{\prime} v}

  • Input
    a b f ( x ) d x = f ( b ) f ( a ) a b f ( x ) d x = f ( b ) f ( a ) int_(a)^(b)f^(')(x)dx=f(b)-f(a)\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)

    • Simplification
    True True "True"\text{True}

  • Input
    y 2 = x 2 y + x 5 y 2 = x 2 y + x 5 y^(2)=x^(2)y+x^(5)y^{2}=x^{2} y+x^{5}

    • Simplification
    y 2 = x 2 ( x 3 + y ) y 2 = x 2 x 3 + y y^(2)=x^(2)(x^(3)+y)y^{2} = x^{2} \left(x^{3} + y\right)

    • Graph
      Plot

  • Input
    x 3 = 10 x 3 = 10 x^(3)=10x^{3}=10

    • Solution
    x { 10 3 , 10 3 2 10 3 3 i 2 , 10 3 2 + 10 3 3 i 2 } x 10 3 , 10 3 2 10 3 3 i 2 , 10 3 2 + 10 3 3 i 2 x in{root(3)(10),-(root(3)(10))/(2)-(root(3)(10)sqrt3i)/(2),-(root(3)(10))/(2)+(root(3)(10)sqrt3i)/(2)}x \in \left\{ \sqrt[3]{10},\, - \frac{\sqrt[3]{10}}{2} - \frac{\sqrt[3]{10} \sqrt{3} i}{2},\, - \frac{\sqrt[3]{10}}{2} + \frac{\sqrt[3]{10} \sqrt{3} i}{2}\right\}

    • Simplification
    x 3 = 10 x 3 = 10 x^(3)=10x^{3} = 10

    • Graph
      Plot

System of Equations


  • Input
    4 x 2 y + 2 z = 30 3 x 2 y 2 z = 13 x y + 2 z = 22 4 x 2 y + 2 z = 30 3 x 2 y 2 z = 13 x y + 2 z = 22 {:[4x-2y+2z=30],[3x-2y-2z=-13],[x-y+2z=22]:}\begin{aligned} 4 x-2 y+2 z &=30 \\ 3 x-2 y-2 z &=-13 \\ x-y+2 z &=22 \end{aligned}

    • Solution
    { x = 3 y = 1 z = 10 x = 3 y = 1 z = 10 {[x=3],[y=1],[z=10]:}\left\{ \begin{array} {l} \,x = 3 \\\, y = 1 \\\, z = 10 \end{array} \right.

  • Input
    { 0.30 x + 0.30 y = 30 0.60 x + 0.10 y = 40 0.30 x + 0.30 y = 30 0.60 x + 0.10 y = 40 {[0.30 x+0.30 y=30],[0.60 x+0.10 y=40]:}\left\{\begin{array}{l}0.30 x+0.30 y=30 \\ 0.60 x+0.10 y=40\end{array}\right.

    • Solution
    { x = 60.0 y = 40.0 x = 60.0 y = 40.0 {[x=60.0],[y=40.0]:}\left\{ \begin{array} {l} \,x = 60.0 \\\, y = 40.0 \end{array} \right.

    • Graph
      Plot

  • Input
    { 2 x + 4 y z = 8 2 x 4 y + 2 z = 3 x + 4 y + z = 3 2 x + 4 y z = 8 2 x 4 y + 2 z = 3 x + 4 y + z = 3 {[2x+4y-z=8],[2x-4y+2z=3],[x+4y+z=3]:}\left\{\begin{array}{r}2 x+4 y-z=8 \\ 2 x-4 y+2 z=3 \\ x+4 y+z=3\end{array}\right.

    • Solution
    { x = 3 y = 1 4 z = 1 x = 3 y = 1 4 z = 1 {[x=3],[y=(1)/(4)],[z=-1]:}\left\{ \begin{array} {l} \,x = 3 \\\, y = \frac{1}{4} \\\, z = -1 \end{array} \right.

  • Input
    { x 1 2 + y + 2 3 = 4 x 2 y = 5 x 1 2 + y + 2 3 = 4 x 2 y = 5 {[(x-1)/(2)+(y+2)/(3)=4],[x-2y=5]:}\left\{\begin{array}{r}\frac{x-1}{2}+\frac{y+2}{3}=4 \\ x-2 y=5\end{array}\right.

    • Solution
    { x = 7 y = 1 x = 7 y = 1 {[x=7],[y=1]:}\left\{ \begin{array} {l} \,x = 7 \\\, y = 1 \end{array} \right.

    • Graph
      Plot

  • Input
    2 x y = 5 7 x 3 y = 20 2 x y = 5 7 x 3 y = 20 {:[2x-y=5],[7x-3y=20]:}\begin{aligned} 2 x-y &=5 \\ 7 x-3 y &=20 \end{aligned}

    • Solution
    { x = 5 y = 5 x = 5 y = 5 {[x=5],[y=5]:}\left\{ \begin{array} {l} \,x = 5 \\\, y = 5 \end{array} \right.

    • Graph
      Plot

  • Input
    x + 5 y = 20 , 3 x 5 y = 20 x + 5 y = 20 , 3 x 5 y = 20 x+5y=20,-3x-5y=-20x+5 y=20, -3 x-5 y=-20

    • Solution
    { x = 0 y = 4 x = 0 y = 4 {[x=0],[y=4]:}\left\{ \begin{array} {l} \,x = 0 \\\, y = 4 \end{array} \right.

    • Graph
      Plot

  • Input
    2 x + y + 7 z = 4 , 3 x 9 y z = 2 , x 8 y 6 z = 9 2 x + y + 7 z = 4 , 3 x 9 y z = 2 , x 8 y 6 z = 9 2x+y+7z=4,3x-9y-z=2,x-8y-6z=-92 x+y+7 z=4, 3 x-9 y-z=2, x-8 y-6 z=-9

    • Solution
    { x = 237 2 y = 177 4 z = 163 4 x = 237 2 y = 177 4 z = 163 4 {[x=-(237)/(2)],[y=-(177)/(4)],[z=(163)/(4)]:}\left\{ \begin{array} {l} \,x = - \frac{237}{2} \\\, y = - \frac{177}{4} \\\, z = \frac{163}{4} \end{array} \right.

  • Input
    x + y z = 7 , 3 x y + z = 1 , x 2 y + 4 z = 46 x + y z = 7 , 3 x y + z = 1 , x 2 y + 4 z = 46 x+y-z=-7,3x-y+z=-1,x-2y+4z=46x+y-z=-7, 3 x-y+z=-1, x-2 y+4 z=46

    • Solution
    { x = 2 y = 14 z = 19 x = 2 y = 14 z = 19 {[x=-2],[y=14],[z=19]:}\left\{ \begin{array} {l} \,x = -2 \\\, y = 14 \\\, z = 19 \end{array} \right.

  • Input
    x + y = 10 , x 2 + 2 = y x + y = 10 , x 2 + 2 = y x+y=10,x^(2)+2=yx + y = 10, x^2 + 2 = y

    • Solution
    { x = 1 2 + 33 2 , y = 21 2 33 2 x = 33 2 1 2 , y = 33 2 + 21 2 x = 1 2 + 33 2 , y = 21 2 33 2 x = 33 2 1 2 , y = 33 2 + 21 2 {[x=-(1)/(2)+(sqrt33)/(2)","quad y=(21)/(2)-(sqrt33)/(2)],[x=-(sqrt33)/(2)-(1)/(2)","quad y=(sqrt33)/(2)+(21)/(2)]:}\left\{ \begin{array} {l} \,x = - \frac{1}{2} + \frac{\sqrt{33}}{2}\,,\quad y = \frac{21}{2} - \frac{\sqrt{33}}{2} \\\, x = - \frac{\sqrt{33}}{2} - \frac{1}{2}\,,\quad y = \frac{\sqrt{33}}{2} + \frac{21}{2} \end{array} \right.

    • Graph
      Plot

  • Input
    12 x + 9 y = 7 9 x 12 y = 6 12 x + 9 y = 7 9 x 12 y = 6 {:[-12 x+9y=7],[9x-12 y=6]:}\begin{aligned} -12 x+9 y &=7 \\ 9 x-12 y &=6 \end{aligned}

    • Solution
    { x = 46 21 y = 15 7 x = 46 21 y = 15 7 {[x=-(46)/(21)],[y=-(15)/(7)]:}\left\{ \begin{array} {l} \,x = - \frac{46}{21} \\\, y = - \frac{15}{7} \end{array} \right.

    • Graph
      Plot

  • Input
    2 x y = 5 7 x 3 y = 20 2 x y = 5 7 x 3 y = 20 {:[2x-y=5],[7x-3y=20]:}\begin{array}{c} 2 x-y=5 \\ 7 x-3 y=20 \end{array}

    • Solution
    { x = 5 y = 5 x = 5 y = 5 {[x=5],[y=5]:}\left\{ \begin{array} {l} \,x = 5 \\\, y = 5 \end{array} \right.

    • Graph
      Plot

  • Input
    { 2 x + 5 x 2 + 2 2 x + 5 x 2 + 2 {[2x+5],[x^(2)+2]:}\left\{\begin{array}{l} 2 x+5 \\ x^{2}+2 \end{array}\right.

    • Solution
    O/\emptyset

  • Input
    { x 3 = y x 2 + y 2 = 10 y = 2 x x 3 = y x 2 + y 2 = 10 y = 2 x {[x^(3)=y],[x^(2)+y^(2)=10],[y=2x]:}\left\{\begin{array}{ccc} x^3 = y \\ x^2 + y^2 = 10 \\ y = 2x \end{array}\right.

    • Solution
    { x = 2 , y = 2 2 x = 2 , y = 2 2 x = 2 , y = 2 2 x = 2 , y = 2 2 {[x=-sqrt2","quad y=-2sqrt2],[x=sqrt2","quad y=2sqrt2]:}\left\{ \begin{array} {l} \,x = - \sqrt{2}\,,\quad y = - 2 \sqrt{2} \\\, x = \sqrt{2}\,,\quad y = 2 \sqrt{2} \end{array} \right.

    • Graph
      Plot

  • Input
    { x 3 = y x 2 + y 2 = 10 y = x x 3 = y x 2 + y 2 = 10 y = x {[x^(3)=y],[x^(2)+y^(2)=10],[y=sqrtx]:}\left\{\begin{array}{ccc} x^3 = y \\ x^2 + y^2 = 10 \\ y = \sqrt{x} \end{array}\right.

    • Solution
    O/\emptyset

    • Graph
      Plot

  • Input
    { x 2 + y = 10 y = 5 x x 2 + y = 10 y = 5 x {[x^(2)+y=10],[y=5x]:}\left\{ \begin{array}{ccc} x^2 + y= 10 \\y = 5x\end{array}\right.

    • Solution
    { x = 5 2 + 65 2 , y = 25 2 + 5 65 2 x = 65 2 5 2 , y = 5 65 2 25 2 x = 5 2 + 65 2 , y = 25 2 + 5 65 2 x = 65 2 5 2 , y = 5 65 2 25 2 {[x=-(5)/(2)+(sqrt65)/(2)","quad y=-(25)/(2)+(5sqrt65)/(2)],[x=-(sqrt65)/(2)-(5)/(2)","quad y=-(5sqrt65)/(2)-(25)/(2)]:}\left\{ \begin{array} {l} \,x = - \frac{5}{2} + \frac{\sqrt{65}}{2}\,,\quad y = - \frac{25}{2} + \frac{5 \sqrt{65}}{2} \\\, x = - \frac{\sqrt{65}}{2} - \frac{5}{2}\,,\quad y = - \frac{5 \sqrt{65}}{2} - \frac{25}{2} \end{array} \right.

    • Graph
      Plot

Limits


  • Input
    lim x 256 ( 1 x 16 32 x 256 ) = lim x 256 1 x 16 32 x 256 = lim_(x rarr256)((1)/(sqrtx-16)-(32)/(x-256))=\lim _{x \rightarrow 256}\left(\frac{1}{\sqrt{x}-16}-\frac{32}{x-256}\right)=

    • Result
    1 32 1 32 (1)/(32)\frac{1}{32}

  • Input
    lim v c L o 1 v 2 c 2 lim v c L o 1 v 2 c 2 lim_(v rarr c)L_(o)sqrt(1-(v^(2))/(c^(2)))\lim _{v \rightarrow c} L_{o} \sqrt{1-\frac{v^{2}}{c^{2}}}

    • Result
    0 0 00

Function


  • Input
    f ( x ) = x 3 / 2 + x 2 / 3 , solve for f ( 1 ) f ( x ) = x 3 / 2 + x 2 / 3 ,  solve for  f ( 1 ) f(x)=x^(3//2)+x^(2//3)," solve for "f^(')(1)f(x)=x^{3 / 2}+x^{2 / 3}, \text { solve for } f^{\prime}(1)

    • Solution
    d d x f ( x ) | x = 1 = 13 6 d d x f x x = 1 = 13 6 (d)/(dx)f((x))|_({:x=1:})=(13)/(6)\left. \frac{d}{d x} f{\left(x \right)} \right|_{\substack{ x=1 }} = \frac{13}{6}

    • Simplification
    f ( x ) = x 2 3 + x 3 2 f x = x 2 3 + x 3 2 f(x)=x^((2)/(3))+x^((3)/(2))f{\left(x \right)} = x^{\frac{2}{3}} + x^{\frac{3}{2}}

  • Input
    f ( x ) = x 2 x 1 , solve for f ( x ) f ( x ) = x 2 x 1 ,  solve for  f ( x ) f(x)=x^(2)-x-1," solve for "f^(')(x)f(x)=x^{2}-x-1, \text { solve for } f^{\prime}(x)

    • Solution
    d d x f ( x ) = 2 x 1 d d x f x = 2 x 1 (d)/(dx)f(x)=2x-1\frac{d}{d x} f{\left(x \right)} = 2 x - 1

    • Simplification
    f ( x ) = x 2 x 1 f x = x 2 x 1 f(x)=x^(2)-x-1f{\left(x \right)} = x^{2} - x - 1

Derivatives


  • Input
    d d x [ 4 e x + 7 e x 9 ] d d x 4 e x + 7 e x 9 (d)/(dx)[(4e^(x)+7e^(-x))/(9)]\frac{d}{d x}\left[\frac{4 e^{x}+7 e^{-x}}{9}\right]

    • Result
    4 e x 9 7 e x 9 4 e x 9 7 e x 9 (4e^(x))/(9)-(7e^(-x))/(9)\frac{4 e^{x}}{9} - \frac{7 e^{- x}}{9}

    • Simplification
    ( 4 e 2 x 9 + 7 9 ) e x + 8 e x 9 4 e 2 x 9 + 7 9 e x + 8 e x 9 -((4e^(2x))/(9)+(7)/(9))e^(-x)+(8e^(x))/(9)- \left(\frac{4 e^{2 x}}{9} + \frac{7}{9}\right) e^{- x} + \frac{8 e^{x}}{9}

Elementary


  • Input
    sin ( x ) sin ( x ) sin(x)\sin(x)

    • Result
    sin ( x ) sin x sin (x)\sin{\left(x \right)}

    • Alternative Forms
    { 1 sec ( x π 2 ) 1 csc ( x ) 2 cot ( x 2 ) cot 2 ( x 2 ) + 1 2 tan ( x 2 ) tan 2 ( x 2 ) + 1 cos ( x π 2 ) 1 sec x π 2 1 csc x 2 cot x 2 cot 2 x 2 + 1 2 tan x 2 tan 2 x 2 + 1 cos x π 2 {[(1)/(sec ((x-(pi)/(2))))],[(1)/(csc ((x)))],[(2cot (((x)/(2))))/(cot^(2)(((x)/(2)))+1)],[(2tan (((x)/(2))))/(tan^(2)(((x)/(2)))+1)],[cos (x-(pi)/(2))]:}\left\{ \begin{array} {l} \,\frac{1}{\sec{\left(x - \frac{\pi}{2} \right)}} \\\, \frac{1}{\csc{\left(x \right)}} \\\, \frac{2 \cot{\left(\frac{x}{2} \right)}}{\cot^{2}{\left(\frac{x}{2} \right)} + 1} \\\, \frac{2 \tan{\left(\frac{x}{2} \right)}}{\tan^{2}{\left(\frac{x}{2} \right)} + 1} \\\, \cos{\left(x - \frac{\pi}{2} \right)} \end{array} \right.

    • Graph
      Plot

Numericals


  • Input
    | 2 0 2 4 3 3 1 2 0 1 3 1 4 1 7 1 | 2      0      2      4 3      3      1      2 0      1      3      1 4      1      7      1 |[2,0,2,4],[3,3,1,2],[0,1,3,1],[4,1,7,1]|\left|\begin{array}{llll}2 & 0 & 2 & 4 \\ 3 & 3 & 1 & 2 \\ 0 & 1 & 3 & 1 \\ 4 & 1 & 7 & 1\end{array}\right|

    • Result
    176.0 176.0 -176.0-176.0