The solver takes in inputs in the form of
L"A"T"E"X\LaTeX expressions and
gives you an appropriate result based on the
L"A"T"E"X\LaTeX query.
- Currently, the supported Result types are:
- Each Result contains a plethora of relevant subsections such as
- Graphs
- Numerical Results
- Simplifications
- Factorizations
- Alternate Forms etc
- The subsections that are returned correspond to the query type.
Querying a Matrix would give you
- Determinants
- Eigenvectors
- Eigenvalues
- Inverses etc
Examples of queries and their corresponding outputs are given below.
Array
-
Input
{[x,x >= 0],[(e^(x)-1),x < 0]:}\left\{\begin{array}{ll} x & x \geq 0 \\ \left(e^{x}-1\right) & x<0 \end{array}\right.
- Graph
Integrals
-
Input
int(x^(4)+7)/(x^(3)+5x)dx\int \frac{x^{4}+7}{x^{3}+5 x} d x
(x^(2))/(2)+(7ln ((x)))/(5)-(16 ln ((x^(2)+5)))/(5)\frac{x^{2}}{2} + \frac{7 \ln{\left(x \right)}}{5} - \frac{16 \ln{\left(x^{2} + 5 \right)}}{5}
int(x^(4)+7)/(x(x^(2)+5))dx\int \frac{x^{4} + 7}{x \left(x^{2} + 5\right)}\, dx
-
Input
int_(0)^(1)x^(2)dx\int_0^1 x^2 dx
(1)/(3)\frac{1}{3}
-
Input
intx^(2)e^(-2x)dx\int x^{2} e^{-2 x} d x
((-2x^(2)-2x-1)e^(-2x))/(4)\frac{\left(- 2 x^{2} - 2 x - 1\right) e^{- 2 x}}{4}
-
Input
int8xe^(7x)dx\int 8 x e^{7 x} d x
((56 x-8)e^(7x))/(49)\frac{\left(56 x - 8\right) e^{7 x}}{49}
(8(7x-1)e^(7x))/(49)\frac{8 \left(7 x - 1\right) e^{7 x}}{49}
-
Input
int(x-3)/((x-1)(x-2))dx\int \frac{x-3}{(x-1)(x-2)} d x
-ln (x-2)+2ln (x-1)- \ln{\left(x - 2 \right)} + 2 \ln{\left(x - 1 \right)}
int(x-3)/((x-2)(x-1))dx\int \frac{x - 3}{\left(x - 2\right) \left(x - 1\right)}\, dx
-
Input
int(x)/(sqrt(2-x^(2)))dx\int \frac{x}{\sqrt{2-x^{2}}} d x
-sqrt(2-x^(2))- \sqrt{2 - x^{2}}
int(x)/(sqrt(2-x^(2)))dx\int \frac{x}{\sqrt{2 - x^{2}}}\, dx
-
Input
inte^(x)cos 4xdx\int e^{x} \cos 4 x d x
(4e^(x)sin ((4x)))/(17)+(e^(x)cos ((4x)))/(17)\frac{4 e^{x} \sin{\left(4 x \right)}}{17} + \frac{e^{x} \cos{\left(4 x \right)}}{17}
-
Input
int_(0)^(1)int_(0)^(1-x^(2))int_(3)^(4-x^(2)-y)xdzdydx\int_{0}^{1} \int_{0}^{1-x^{2}} \int_{3}^{4-x^{2}-y} x d z d y d x
(1)/(12)\frac{1}{12}
int_(0)^(1)int_(0)^(1-x^(2))int_(3)^(-x^(2)-y+4)xdzdydx\int\limits_{0}^{1}\int\limits_{0}^{1 - x^{2}}\int\limits_{3}^{- x^{2} - y + 4} x\, dz\, dy\, dx
-
Input
int(e^(x))/(1+e^(2x))dx=\int \frac{e^{x}}{1+e^{2 x}} d x=
tan^(-1)(e^(x))\tan^{-1}{\left(e^{x} \right)}
int(1)/(2cosh ((x)))dx\int \frac{1}{2 \cosh{\left(x \right)}}\, dx
-
Input
int((4)/(3y)+(3)/(y^(2))-(2)/(root(7)(y)))dy\int\left(\frac{4}{3 y}+\frac{3}{y^{2}}-\frac{2}{\sqrt[7]{y}}\right) d y
-(7y^((6)/(7)))/(3)+(4ln ((y)))/(3)-(3)/(y)- \frac{7 y^{\frac{6}{7}}}{3} + \frac{4 \ln{\left(y \right)}}{3} - \frac{3}{y}
int((4)/(3y)+(3)/(y^(2))-(2)/(root(7)(y)))dy\int \left(\frac{4}{3 y} + \frac{3}{y^{2}} - \frac{2}{\sqrt[7]{y}}\right)\, dy
-
Input
int_(1)^(5)1+(1)/(u)+(1)/(u^(2))du\int_{1}^{5} 1+\frac{1}{u}+\frac{1}{u^{2}} d u
ln (5)+(24)/(5)\ln{\left(5 \right)} + \frac{24}{5}
-
Input
int(-8e^(t)+19 t)dt\int\left(-8 e^{t}+19 t\right) d t
(19t^(2))/(2)-8e^(t)\frac{19 t^{2}}{2} - 8 e^{t}
-
Input
inte^(3x+9)dx\int e^{3 x+9} d x
(e^(3x+9))/(3)\frac{e^{3 x + 9}}{3}
Matrices
-
Input
[[-1,7],[3,7]][[-1,7],[3,7]]\left[\begin{array}{cc}-1 & 7 \\ 3 & 7\end{array}\right]\left[\begin{array}{rr}-1 & 7 \\ 3 & 7\end{array}\right]
[[22,42],[18,70]]\left[\begin{matrix}22 & 42\\18 & 70\end{matrix}\right]
[[(5)/(56),-(3)/(56)],[-(9)/(392),(11)/(392)]]\left[\begin{matrix}\frac{5}{56} & - \frac{3}{56}\\- \frac{9}{392} & \frac{11}{392}\end{matrix}\right]
{[v_(lambda_(1))=[[-(42)/(-24+6sqrt37)],[1]]],[v_(lambda_(2))=[[-(42)/(-6sqrt37-24)],[1]]]:}\left\{ \begin{array} {l} \,v_{\lambda_1}=\left[\begin{matrix}- \frac{42}{-24 + 6 \sqrt{37}}\\1\end{matrix}\right] \\\,
v_{\lambda_2}=\left[\begin{matrix}- \frac{42}{- 6 \sqrt{37} - 24}\\1\end{matrix}\right] \end{array} \right.
{[lambda_(1)=46-6sqrt37],[lambda_(2)=6sqrt37+46]:}\left\{ \begin{array} {l} \,\lambda_1=46 - 6 \sqrt{37} \\\,
\lambda_2=6 \sqrt{37} + 46 \end{array} \right.
- Characteristic Polynomial
p(lambda)=lambda^(2)-92 lambda+784p{\left(\lambda \right)} = \lambda^{2} - 92 \lambda + 784
(2,2)\left( 2, \ 2\right)
{[mu _(A)(lambda_(1))=1],[mu _(A)(lambda_(2))=1]:}\left\{ \begin{array} {l} \,\mu_A(\lambda_1)=1 \\\,
\mu_A(\lambda_2)=1 \end{array} \right.
-
Input
[[-3,-5,-3],[1,3,5]]+[[3,1,0],[-2,6,-2]]\left[\begin{array}{rrr}-3 & -5 & -3 \\ 1 & 3 & 5\end{array}\right]+\left[\begin{array}{rrr}3 & 1 & 0 \\ -2 & 6 & -2\end{array}\right]
[[0,-4,-3],[-1,9,3]]\left[\begin{matrix}0 & -4 & -3\\-1 & 9 & 3\end{matrix}\right]
-
Input
[[4,-5],[-6,5],[-1,4]]-[[2,-4],[-6,2],[3,-1]]\left[\begin{array}{cc}4 & -5 \\ -6 & 5 \\ -1 & 4\end{array}\right]-\left[\begin{array}{cc}2 & -4 \\ -6 & 2 \\ 3 & -1\end{array}\right]
[[2,-1],[0,3],[-4,5]]\left[\begin{matrix}2 & -1\\0 & 3\\-4 & 5\end{matrix}\right]
-
Input
([cos theta,sin theta],[-sin theta,cos theta])\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)
[[cos (theta),sin (theta)],[-sin (theta),cos (theta)]]\left[\begin{matrix}\cos{\left(\theta \right)} & \sin{\left(\theta \right)}\\- \sin{\left(\theta \right)} & \cos{\left(\theta \right)}\end{matrix}\right]
[[(1-sin^(2)((theta)))/(cos ((theta))),-sin (theta)],[sin (theta),cos (theta)]]\left[\begin{matrix}\frac{1 - \sin^{2}{\left(\theta \right)}}{\cos{\left(\theta \right)}} & - \sin{\left(\theta \right)}\\\sin{\left(\theta \right)} & \cos{\left(\theta \right)}\end{matrix}\right]
sin^(2)(theta)+cos^(2)(theta)\sin^{2}{\left(\theta \right)} + \cos^{2}{\left(\theta \right)}
{[v_(lambda_(1))=[[-(sin ((theta)))/(sqrt((cos ((theta))-1)(cos ((theta))+1)))],[1]]],[v_(lambda_(2))=[[(sin ((theta)))/(sqrt((cos ((theta))-1)(cos ((theta))+1)))],[1]]]:}\left\{ \begin{array} {l} \,v_{\lambda_1}=\left[\begin{matrix}- \frac{\sin{\left(\theta \right)}}{\sqrt{\left(\cos{\left(\theta \right)} - 1\right) \left(\cos{\left(\theta \right)} + 1\right)}}\\1\end{matrix}\right] \\\,
v_{\lambda_2}=\left[\begin{matrix}\frac{\sin{\left(\theta \right)}}{\sqrt{\left(\cos{\left(\theta \right)} - 1\right) \left(\cos{\left(\theta \right)} + 1\right)}}\\1\end{matrix}\right] \end{array} \right.
{[lambda_(1)=-sqrt((cos ((theta))-1)(cos ((theta))+1))+cos (theta)],[lambda_(2)=sqrt((cos ((theta))-1)(cos ((theta))+1))+cos (theta)]:}\left\{ \begin{array} {l} \,\lambda_1=- \sqrt{\left(\cos{\left(\theta \right)} - 1\right) \left(\cos{\left(\theta \right)} + 1\right)} + \cos{\left(\theta \right)} \\\,
\lambda_2=\sqrt{\left(\cos{\left(\theta \right)} - 1\right) \left(\cos{\left(\theta \right)} + 1\right)} + \cos{\left(\theta \right)} \end{array} \right.
- Characteristic Polynomial
p(lambda)=lambda^(2)-2lambda cos (theta)+1p{\left(\lambda \right)} = \lambda^{2} - 2 \lambda \cos{\left(\theta \right)} + 1
(2,2)\left( 2, \ 2\right)
{[mu _(A)(lambda_(1))=1],[mu _(A)(lambda_(2))=1]:}\left\{ \begin{array} {l} \,\mu_A(\lambda_1)=1 \\\,
\mu_A(\lambda_2)=1 \end{array} \right.
Generic
-
Input
(-18m^(2)n)^(2)**(-(1)/(6)mn^(2))=\left(-18 m^{2} n\right)^{2} *\left(-\frac{1}{6} m n^{2}\right)=
{[m=0],[n=0]:}\left\{ \begin{array} {l} \,m = 0 \\\,
n = 0 \end{array} \right.
-54m^(5)n^(4)- 54 m^{5} n^{4}
- Graph
-
Input
log_(6)(1)/(6)\log _{6} \frac{1}{6}
-
Input
(-7+6i)(3+i)(-7+6 i)(3+i)
(-7+6i)(3+i)\left(-7 + 6 i\right) \left(3 + i\right)
-27.0+11.0 i-27.0 + 11.0 i
-27+11 i-27 + 11 i
-
Input
sqrt((252q^(6)k^(16))/(175 qk^(4)))\sqrt{\frac{252 q^{6} k^{16}}{175 q k^{4}}}
(6sqrt(k^(12)q^(5)))/(5)\frac{6 \sqrt{k^{12} q^{5}}}{5}
6sqrt7(sqrt7sqrt(k^(12)q^(5)))/(35)6 \sqrt{7} \frac{\sqrt{7} \sqrt{k^{12} q^{5}}}{35}
- Graph
-
Input
(sqrt(160y^(10)))/(sqrt(2y^(2)))\frac{\sqrt{160 y^{10}}}{\sqrt{2 y^{2}}}
(4sqrt5sqrt(y^(10)))/(sqrt(y^(2)))\frac{4 \sqrt{5} \sqrt{y^{10}}}{\sqrt{y^{2}}}
- Graph
-
Input
(z)/(z^(2)+9z+14)+(2)/(z^(2)+9z+14)\frac{z}{z^{2}+9 z+14}+\frac{2}{z^{2}+9 z+14}
(z)/(z^(2)+9z+14)+(2)/(z^(2)+9z+14)\frac{z}{z^{2} + 9 z + 14} + \frac{2}{z^{2} + 9 z + 14}
(1)/(z+7)\frac{1}{z + 7}
(z)/((z^(2)+9z)+14)+(2)/((z^(2)+9z)+14)\frac{z}{\left(z^{2} + 9 z\right) + 14} + \frac{2}{\left(z^{2} + 9 z\right) + 14}
- Graph
-
Input
(14!)/((14-4)!)\frac{14 !}{(14-4) !}
(14!)/((-4+14)!)\frac{14!}{\left(-4 + 14\right)!}
2402424024
-
Input
(5-9i)(5+9i)(5-9 i)(5+9 i)
(5-9i)(5+9i)\left(5 - 9 i\right) \left(5 + 9 i\right)
106.0106.0
-
Input
125x^(3)-216m^(3)125 x^{3}-216 m^{3}
(-6m+5x)(36m^(2)+30 mx+25x^(2))\left(- 6 m + 5 x\right) \left(36 m^{2} + 30 m x + 25 x^{2}\right)
{[m=(5x)/(6)","quad m=x(-(5)/(12)-(5sqrt3i)/(12))","quad m=x(-(5)/(12)+(5sqrt3i)/(12))],[x=(6m)/(5)","quad x=6m(-(1)/(10)-(sqrt3i)/(10))","quad x=6m(-(1)/(10)+(sqrt3i)/(10))]:}\left\{ \begin{array} {l} \,m = \frac{5 x}{6}\,,\quad m = x \left(- \frac{5}{12} - \frac{5 \sqrt{3} i}{12}\right)\,,\quad m = x \left(- \frac{5}{12} + \frac{5 \sqrt{3} i}{12}\right) \\\,
x = \frac{6 m}{5}\,,\quad x = 6 m \left(- \frac{1}{10} - \frac{\sqrt{3} i}{10}\right)\,,\quad x = 6 m \left(- \frac{1}{10} + \frac{\sqrt{3} i}{10}\right) \end{array} \right.
-216m^(3)+125x^(3)- 216 m^{3} + 125 x^{3}
- Graph
-
Input
(5+2i)^(2)(5+2 i)^{2}
(5+2i)^(2)\left(5 + 2 i\right)^{2}
21.0+20.0 i21.0 + 20.0 i
21+20 i21 + 20 i
-
Input
x^(2)+3x-18x^{2}+3 x-18
(x-3)(x+6)\left(x - 3\right) \left(x + 6\right)
x in{-6,3}x \in \left\{ -6,\, 3\right\}
x^(2)+3x-18x^{2} + 3 x - 18
(x^(2)+3x)-18\left(x^{2} + 3 x\right) - 18
- Graph
-
Input
2cos^(2)(44^(@))-12 \cos ^{2}\left(44^{\circ}\right)-1
-1+2cos^(2)((11 pi)/(45))-1 + 2 \cos^{2}{\left(\frac{11 \pi}{45} \right)}
0.0348994967025010.034899496702501
cos ((22 pi)/(45))\cos{\left(\frac{22 \pi}{45} \right)}
-
Input
(-18)-:6xx(-12)=(-18) \div 6 \times(-12)=
-
Input
ln((e^(5))/(6))\ln \left(\frac{e^{5}}{6}\right)
ln ((e^(5))/(6))\ln{\left(\frac{e^{5}}{6} \right)}
3.208240530771953.20824053077195
5-ln (6)5 - \ln{\left(6 \right)}
-
Input
a^(2)+b^(2)+2aba^2 + b^2 + 2 a b
(a+b)^(2)\left(a + b\right)^{2}
{[a=-b],[b=-a]:}\left\{ \begin{array} {l} \,a = - b \\\,
b = - a \end{array} \right.
a^(2)+2ab+b^(2)a^{2} + 2 a b + b^{2}
2ab+(a^(2)+b^(2))2 a b + \left(a^{2} + b^{2}\right)
- Graph
-
Input
((6)/(5))^(4)xx((6)/(5))^(2)=\left(\frac{6}{5}\right)^{4} \times\left(\frac{6}{5}\right)^{2}=
(46656)/(15625)\frac{46656}{15625}
2.9859842.985984
-
Input
-(1)/(2)+(sqrt33)/(2)-\frac{1}{2}+\frac{\sqrt{33}}{2}
(-1+sqrt33)/(2)\frac{-1 + \sqrt{33}}{2}
-(1)/(2)+(sqrt33)/(2)- \frac{1}{2} + \frac{\sqrt{33}}{2}
2.372281323269012.37228132326901
-
Input
f(x)=(2x)/(3+x)f(x)=\frac{2 x}{3+x}
(2x)/(x+3)\frac{2 x}{x + 3}
- Graph
-
Input
-x^(2)+14 x-20-x^{2}+14 x-20
x in{7-sqrt29,sqrt29+7}x \in \left\{ 7 - \sqrt{29},\, \sqrt{29} + 7\right\}
-x^(2)+14 x-20- x^{2} + 14 x - 20
(-x^(2)+14 x)-20\left(- x^{2} + 14 x\right) - 20
- Graph
-
Input
(pi)/(4)\frac{\pi}{4}
0.7853981633974480.785398163397448
-
Input
(2x^(2)-18)/(x^(4)+2x^(3)-3x^(2))*(x^(2)-11 x+10)/(x^(2)-13 x+30)\frac{2 x^{2}-18}{x^{4}+2 x^{3}-3 x^{2}} \cdot \frac{x^{2}-11 x+10}{x^{2}-13 x+30}
((2x^(2)-18)(x^(2)-11 x+10))/((x^(2)-13 x+30)(x^(4)+2x^(3)-3x^(2)))\frac{\left(2 x^{2} - 18\right) \left(x^{2} - 11 x + 10\right)}{\left(x^{2} - 13 x + 30\right) \left(x^{4} + 2 x^{3} - 3 x^{2}\right)}
(2)/(x^(2))\frac{2}{x^{2}}
(2x^(4))/(x^(6)-11x^(5)+x^(4)+99x^(3)-90x^(2))-(22x^(3))/(x^(6)-11x^(5)+x^(4)+99x^(3)-90x^(2))+(2x^(2))/(x^(6)-11x^(5)+x^(4)+99x^(3)-90x^(2))+(198 x)/(x^(6)-11x^(5)+x^(4)+99x^(3)-90x^(2))-(180)/(x^(6)-11x^(5)+x^(4)+99x^(3)-90x^(2))\frac{2 x^{4}}{x^{6} - 11 x^{5} + x^{4} + 99 x^{3} - 90 x^{2}} - \frac{22 x^{3}}{x^{6} - 11 x^{5} + x^{4} + 99 x^{3} - 90 x^{2}} + \frac{2 x^{2}}{x^{6} - 11 x^{5} + x^{4} + 99 x^{3} - 90 x^{2}} + \frac{198 x}{x^{6} - 11 x^{5} + x^{4} + 99 x^{3} - 90 x^{2}} - \frac{180}{x^{6} - 11 x^{5} + x^{4} + 99 x^{3} - 90 x^{2}}
- Graph
-
Input
x^(2)+y^(3)x^2 + y^3
{[x=-sqrt(-y^(3))","quad x=sqrt(-y^(3))],[y=root(3)(-x^(2))","quad y=-(root(3)(-x^(2)))/(2)-(sqrt3iroot(3)(-x^(2)))/(2)","quad y=-(root(3)(-x^(2)))/(2)+(sqrt3iroot(3)(-x^(2)))/(2)]:}\left\{ \begin{array} {l} \,x = - \sqrt{- y^{3}}\,,\quad x = \sqrt{- y^{3}} \\\,
y = \sqrt[3]{- x^{2}}\,,\quad y = - \frac{\sqrt[3]{- x^{2}}}{2} - \frac{\sqrt{3} i \sqrt[3]{- x^{2}}}{2}\,,\quad y = - \frac{\sqrt[3]{- x^{2}}}{2} + \frac{\sqrt{3} i \sqrt[3]{- x^{2}}}{2} \end{array} \right.
x^(2)+y^(3)x^{2} + y^{3}
- Graph
-
Input
x^(2)+y^(2)x^2 + y^2
{[x=-iy","quad x=iy],[y=-ix","quad y=ix]:}\left\{ \begin{array} {l} \,x = - i y\,,\quad x = i y \\\,
y = - i x\,,\quad y = i x \end{array} \right.
x^(2)+y^(2)x^{2} + y^{2}
- Graph
-
Input
8//(2+360)8 / (2 + 360)
(4)/(181)\frac{4}{181}
0.02209944751381220.0220994475138122
(8)/(2+360)\frac{8}{2 + 360}
-
Input
(0.3*10^(-2)+0.8 c)/(1+(0.3*10^(-2)*0.8 c)/(c^(2)))\frac{0.3\cdot10^{-2} + 0.8c}{1 + \frac{0.3\cdot10^{-2}\cdot 0.8c}{c^2}}
(0.8 c(1.0 c+0.00375))/(1.0 c+0.0024)\frac{0.8 c \left(1.0 c + 0.00375\right)}{1.0 c + 0.0024}
c=-0.00375c = -0.00375
(0.8 c+0.003)/(1+(0.0024 )/(c))\frac{0.8 c + 0.003}{1 + \frac{0.0024}{c}}
(c(0.8 c+0.003))/(c+0.0024)\frac{c \left(0.8 c + 0.003\right)}{c + 0.0024}
(0.8 c)/(1+(0.0024 )/(c))+(0.003)/(1+(0.0024 )/(c))\frac{0.8 c}{1 + \frac{0.0024}{c}} + \frac{0.003}{1 + \frac{0.0024}{c}}
- Graph
-
Input
(0.8 c+0.3)/((0.24 )/(c)+1)\frac{0.8 c+0.3}{\frac{0.24}{c}+1}
(0.8 c(1.0 c+0.375))/(1.0 c+0.24)\frac{0.8 c \left(1.0 c + 0.375\right)}{1.0 c + 0.24}
c=-0.375c = -0.375
(0.8 c+0.3)/(1+(0.24 )/(c))\frac{0.8 c + 0.3}{1 + \frac{0.24}{c}}
(c(0.8 c+0.3))/(c+0.24)\frac{c \left(0.8 c + 0.3\right)}{c + 0.24}
(0.8 c)/(1+(0.24 )/(c))+(0.3)/(1+(0.24 )/(c))\frac{0.8 c}{1 + \frac{0.24}{c}} + \frac{0.3}{1 + \frac{0.24}{c}}
- Graph
-
Input
a^(2)+b^(3)a^2 + b^3
{[a=-sqrt(-b^(3))","quad a=sqrt(-b^(3))],[b=root(3)(-a^(2))","quad b=-(root(3)(-a^(2)))/(2)-(sqrt3iroot(3)(-a^(2)))/(2)","quad b=-(root(3)(-a^(2)))/(2)+(sqrt3iroot(3)(-a^(2)))/(2)]:}\left\{ \begin{array} {l} \,a = - \sqrt{- b^{3}}\,,\quad a = \sqrt{- b^{3}} \\\,
b = \sqrt[3]{- a^{2}}\,,\quad b = - \frac{\sqrt[3]{- a^{2}}}{2} - \frac{\sqrt{3} i \sqrt[3]{- a^{2}}}{2}\,,\quad b = - \frac{\sqrt[3]{- a^{2}}}{2} + \frac{\sqrt{3} i \sqrt[3]{- a^{2}}}{2} \end{array} \right.
a^(2)+b^(3)a^{2} + b^{3}
- Graph
-
Input
sin(x)xx sin(y)\sin(x) \times \sin(y)
{[x=0","quad x=pi],[y=0","quad y=pi]:}\left\{ \begin{array} {l} \,x = 0\,,\quad x = \pi \\\,
y = 0\,,\quad y = \pi \end{array} \right.
sin (x)sin (y)\sin{\left(x \right)} \sin{\left(y \right)}
- Graph
-
Input
sin(x)*sin(y)\sin (x) \cdot \sin (y)
{[x=0","quad x=pi],[y=0","quad y=pi]:}\left\{ \begin{array} {l} \,x = 0\,,\quad x = \pi \\\,
y = 0\,,\quad y = \pi \end{array} \right.
sin (x)sin (y)\sin{\left(x \right)} \sin{\left(y \right)}
- Graph
-
Input
- Graph
-
Input
x^(2//3)+y^(2//3)x^{2 / 3}+y^{2 / 3}
{[x=-iy","quad x=iy],[y=-ix","quad y=ix]:}\left\{ \begin{array} {l} \,x = - i y\,,\quad x = i y \\\,
y = - i x\,,\quad y = i x \end{array} \right.
x^((2)/(3))+y^((2)/(3))x^{\frac{2}{3}} + y^{\frac{2}{3}}
- Graph
-
Input
f(x)={[xe^(2x)," si ",x < 0],[(ln(x+1))/(x+1)," si ",x >= 0]:}f(x)=\left\{\begin{array}{ccc} x e^{2 x} & \text { si } & x<0 \\ \frac{\ln (x+1)}{x+1} & \text { si } & x \geq 0 \end{array}\right.
- Graph
Concrete
-
Input
sum_(n=1)^(7)2(-2)^(n-1)\sum_{n=1}^{7} 2(-2)^{n-1}
-sum_(n=1)^(7)(-1)^(n)2^(n)- \sum_{n=1}^{7} \left(-1\right)^{n} 2^{n}
Relationals
-
Input
(u+5)(u+3) <= -1(u+5)(u+3) \leq-1
u=-4u = -4
u^(2)+8u <= -16u^{2} + 8 u \leq -16
- Graph
-
Input
x-y <= 10x - y \leq 10
{[x <= y+10^^-oo < x],[y >= x-10^^y < oo]:}\left\{ \begin{array} {l} \,x \leq y + 10 \wedge -\infty < x \\\,
y \geq x - 10 \wedge y < \infty \end{array} \right.
- Graph
-
Input
x^(2)+y^(3) >= 4x^{2}+y^{3} \geq 4
- Graph
-
Input
x^(4)+y^(6) <= 3x^4 + y^6 \leq 3
- Graph
-
Input
x^(2)+y^(3) <= 3x^2 + y^3 \leq 3
- Graph
-
Input
x+y <= 10x + y \leq 10
{[x <= 10-y^^-oo < x],[y <= 10-x^^-oo < y]:}\left\{ \begin{array} {l} \,x \leq 10 - y \wedge -\infty < x \\\,
y \leq 10 - x \wedge -\infty < y \end{array} \right.
- Graph
-
Input
x^(2)+y^(2) <= 20x^2 + y^2 \leq 20
- Graph
-
Input
x^(2)+y^(2) <= 10x^{2}+y^{2} \leq 10
- Graph
-
Input
x^(2)-y^(2) <= 10x^{2}-y^{2} \leq 10
- Graph
Equation
-
Input
x^((2)/(3))-4x^((1)/(3))-5=0x^{\frac{2}{3}}-4 x^{\frac{1}{3}}-5=0
x=125x = 125
-x^((2)/(3))+4root(3)(x)+5=0- x^{\frac{2}{3}} + 4 \sqrt[3]{x} + 5 = 0
- Graph
-
Input
|[x,2,6],[6,x,0],[5,1,-6]|=108\left|\begin{array}{ccc}x & 2 & 6 \\ 6 & x & 0 \\ 5 & 1 & -6\end{array}\right|=108
x in{-5,0}x \in \left\{ -5,\, 0\right\}
x^(2)+5x=0x^{2} + 5 x = 0
- Graph
-
Input
x^(2)+2x+1=0x ^ 2 + 2 x + 1 = 0
x=-1x = -1
x^(2)+2x=-1x^{2} + 2 x = -1
- Graph
-
Input
cot(180^(@)-theta)=cot theta\cot \left(180^{\circ}-\theta\right)=\cot \theta
theta=(pi)/(2)\theta = \frac{\pi}{2}
cot (theta)=-cot (theta)\cot{\left(\theta \right)} = - \cot{\left(\theta \right)}
- Graph
-
Input
9^(x)*3^(x^(2))=81^(2)9^{x} \cdot 3^{x^{2}}=81^{2}
x in{-4,2}x \in \left\{ -4,\, 2\right\}
3^(x(x+2))=65613^{x \left(x + 2\right)} = 6561
- Graph
-
Input
sqrt(x+73)=x+1\sqrt{x+73}=x+1
x+1=sqrt(x+73)x + 1 = \sqrt{x + 73}
- Graph
-
Input
((5)/(2))=2y\binom{5}{2} = 2 y
- Graph
-
Input
int_(0)^(1)x^(2)dx=2y\int_0^1 x^2 dx = 2 y
y=(1)/(6)y = \frac{1}{6}
y=(int_(0)^(1)x^(2)dx)/(2)y = \frac{\int\limits_{0}^{1} x^{2}\, dx}{2}
- Graph
-
Input
5^(7x+2)=2^(x-3)5^{7 x+2}=2^{x-3}
x=ln (200^((1)/(ln (((2)/(78125))))))x = \ln{\left(200^{\frac{1}{\ln{\left(\frac{2}{78125} \right)}}} \right)}
2^(x-3)=5^(7x+2)2^{x - 3} = 5^{7 x + 2}
- Graph
-
Input
sin(4pi x)=(sqrt3)/(2)\sin (4 \pi x)=\frac{\sqrt{3}}{2}
x in{(1)/(12),(1)/(6)}x \in \left\{ \frac{1}{12},\, \frac{1}{6}\right\}
sin (4pi x)=(sqrt3)/(2)\sin{\left(4 \pi x \right)} = \frac{\sqrt{3}}{2}
- Graph
-
Input
log_(x)64=3\log _{x} 64=3
log_(x)(64)=3\log_{x} {\left(64 \right)} = 3
- Graph
-
Input
(sqrt(4-3x))/(sqrt(3x))=2\frac{\sqrt{4-3 x}}{\sqrt{3 x}}=2
x=(4)/(15)x = \frac{4}{15}
(sqrt(12-9x))/(3sqrtx)=2\frac{\sqrt{12 - 9 x}}{3 \sqrt{x}} = 2
- Graph
-
Input
log_(49)root(3)(7)=x\log _{49} \sqrt[3]{7}=x
x=(1)/(6)x = \frac{1}{6}
- Graph
-
Input
x^(2)=4x ^ 2 = 4
x in{-2,2}x \in \left\{ -2,\, 2\right\}
x^(2)=4x^{2} = 4
- Graph
-
Input
(3)/(4)=3x\frac{3}{4} = 3 x
x=(1)/(4)x = \frac{1}{4}
- Graph
-
Input
(3)/(a+2)+(4)/(a-1)=0\frac{3}{a+2}+\frac{4}{a-1}=0
a=-(5)/(7)a = - \frac{5}{7}
(7a+5)/((a-1)(a+2))=0\frac{7 a + 5}{\left(a - 1\right) \left(a + 2\right)} = 0
- Graph
-
Input
y=(2x)/(3+x)y=\frac{2 x}{3+x}
{[x=-(3y)/(y-2)],[y=(2x)/(x+3)]:}\left\{ \begin{array} {l} \,x = - \frac{3 y}{y - 2} \\\,
y = \frac{2 x}{x + 3} \end{array} \right.
y=(2x)/(x+3)y = \frac{2 x}{x + 3}
- Graph
-
Input
x+y=10x + y = 10
{[x=10-y],[y=10-x]:}\left\{ \begin{array} {l} \,x = 10 - y \\\,
y = 10 - x \end{array} \right.
- Graph
-
Input
y^(2)+x^(2)=z^(2)y^{2}+x^{2}=z^{2}
{[x=-sqrt(-y^(2)+z^(2))","quad x=sqrt(-y^(2)+z^(2))],[y=-sqrt(-x^(2)+z^(2))","quad y=sqrt(-x^(2)+z^(2))],[z=-sqrt(x^(2)+y^(2))","quad z=sqrt(x^(2)+y^(2))]:}\left\{ \begin{array} {l} \,x = - \sqrt{- y^{2} + z^{2}}\,,\quad x = \sqrt{- y^{2} + z^{2}} \\\,
y = - \sqrt{- x^{2} + z^{2}}\,,\quad y = \sqrt{- x^{2} + z^{2}} \\\,
z = - \sqrt{x^{2} + y^{2}}\,,\quad z = \sqrt{x^{2} + y^{2}} \end{array} \right.
z^(2)=x^(2)+y^(2)z^{2} = x^{2} + y^{2}
-
Input
x^(2)+y^(2)=100x^2 + y^2 = 100
{[x=-sqrt(100-y^(2))","quad x=sqrt(100-y^(2))],[y=-sqrt(100-x^(2))","quad y=sqrt(100-x^(2))]:}\left\{ \begin{array} {l} \,x = - \sqrt{100 - y^{2}}\,,\quad x = \sqrt{100 - y^{2}} \\\,
y = - \sqrt{100 - x^{2}}\,,\quad y = \sqrt{100 - x^{2}} \end{array} \right.
x^(2)+y^(2)=100x^{2} + y^{2} = 100
- Graph
-
Input
x^(2)+y^(3)=100x^2 + y^3 = 100
{[x=-sqrt(100-y^(3))","quad x=sqrt(100-y^(3))],[y=root(3)(100-x^(2))","quad y=-(root(3)(100-x^(2)))/(2)-(sqrt3iroot(3)(100-x^(2)))/(2)","quad y=-(root(3)(100-x^(2)))/(2)+(sqrt3iroot(3)(100-x^(2)))/(2)]:}\left\{ \begin{array} {l} \,x = - \sqrt{100 - y^{3}}\,,\quad x = \sqrt{100 - y^{3}} \\\,
y = \sqrt[3]{100 - x^{2}}\,,\quad y = - \frac{\sqrt[3]{100 - x^{2}}}{2} - \frac{\sqrt{3} i \sqrt[3]{100 - x^{2}}}{2}\,,\quad y = - \frac{\sqrt[3]{100 - x^{2}}}{2} + \frac{\sqrt{3} i \sqrt[3]{100 - x^{2}}}{2} \end{array} \right.
x^(2)+y^(3)=100x^{2} + y^{3} = 100
- Graph
-
Input
u=(0.3*10^(-2)+2.4*10^(8))/(1+(0.3*10^(-2))*(2.66851*10^(-9)))u=\frac{0.3 \cdot 10^{-2} + 2.4\cdot10^8}{1+ (0.3 \cdot 10^{-2}) \cdot (2.66851\cdot10^{-9})}
u=240000000.001079u = 240000000.001079
- Graph
-
Input
u=(u^(')+v)/(1+u^(')v//c^(2))u=\frac{u^{\prime}+v}{1+u^{\prime} v / c^{2}}
{[c=-sqrt((uu^(')v)/(-u+u^(')+v))","quad c=sqrt((uu^(')v)/(-u+u^(')+v))],[u=(c^(2)(u^(')+v))/(c^(2)+u^(')v)],[u^(')=(c^(2)(u-v))/(c^(2)-uv)],[v=(c^(2)(u-u^(')))/(c^(2)-uu^('))]:}\left\{ \begin{array} {l} \,c = - \sqrt{\frac{u u^{\prime} v}{- u + u^{\prime} + v}}\,,\quad c = \sqrt{\frac{u u^{\prime} v}{- u + u^{\prime} + v}} \\\,
u = \frac{c^{2} \left(u^{\prime} + v\right)}{c^{2} + u^{\prime} v} \\\,
u^{\prime} = \frac{c^{2} \left(u - v\right)}{c^{2} - u v} \\\,
v = \frac{c^{2} \left(u - u^{\prime}\right)}{c^{2} - u u^{\prime}} \end{array} \right.
u=(c^(2)(u^(')+v))/(c^(2)+u^(')v)u = \frac{c^{2} \left(u^{\prime} + v\right)}{c^{2} + u^{\prime} v}
-
Input
int_(a)^(b)f^(')(x)dx=f(b)-f(a)\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)
"True"\text{True}
-
Input
y^(2)=x^(2)y+x^(5)y^{2}=x^{2} y+x^{5}
y^(2)=x^(2)(x^(3)+y)y^{2} = x^{2} \left(x^{3} + y\right)
- Graph
-
Input
x^(3)=10x^{3}=10
x in{root(3)(10),-(root(3)(10))/(2)-(root(3)(10)sqrt3i)/(2),-(root(3)(10))/(2)+(root(3)(10)sqrt3i)/(2)}x \in \left\{ \sqrt[3]{10},\, - \frac{\sqrt[3]{10}}{2} - \frac{\sqrt[3]{10} \sqrt{3} i}{2},\, - \frac{\sqrt[3]{10}}{2} + \frac{\sqrt[3]{10} \sqrt{3} i}{2}\right\}
x^(3)=10x^{3} = 10
- Graph
System of Equations
-
Input
{:[4x-2y+2z=30],[3x-2y-2z=-13],[x-y+2z=22]:}\begin{aligned} 4 x-2 y+2 z &=30 \\ 3 x-2 y-2 z &=-13 \\ x-y+2 z &=22 \end{aligned}
{[x=3],[y=1],[z=10]:}\left\{ \begin{array} {l} \,x = 3 \\\,
y = 1 \\\,
z = 10 \end{array} \right.
-
Input
{[0.30 x+0.30 y=30],[0.60 x+0.10 y=40]:}\left\{\begin{array}{l}0.30 x+0.30 y=30 \\ 0.60 x+0.10 y=40\end{array}\right.
{[x=60.0],[y=40.0]:}\left\{ \begin{array} {l} \,x = 60.0 \\\,
y = 40.0 \end{array} \right.
- Graph
-
Input
{[2x+4y-z=8],[2x-4y+2z=3],[x+4y+z=3]:}\left\{\begin{array}{r}2 x+4 y-z=8 \\ 2 x-4 y+2 z=3 \\ x+4 y+z=3\end{array}\right.
{[x=3],[y=(1)/(4)],[z=-1]:}\left\{ \begin{array} {l} \,x = 3 \\\,
y = \frac{1}{4} \\\,
z = -1 \end{array} \right.
-
Input
{[(x-1)/(2)+(y+2)/(3)=4],[x-2y=5]:}\left\{\begin{array}{r}\frac{x-1}{2}+\frac{y+2}{3}=4 \\ x-2 y=5\end{array}\right.
{[x=7],[y=1]:}\left\{ \begin{array} {l} \,x = 7 \\\,
y = 1 \end{array} \right.
- Graph
-
Input
{:[2x-y=5],[7x-3y=20]:}\begin{aligned} 2 x-y &=5 \\ 7 x-3 y &=20 \end{aligned}
{[x=5],[y=5]:}\left\{ \begin{array} {l} \,x = 5 \\\,
y = 5 \end{array} \right.
- Graph
-
Input
x+5y=20,-3x-5y=-20x+5 y=20, -3 x-5 y=-20
{[x=0],[y=4]:}\left\{ \begin{array} {l} \,x = 0 \\\,
y = 4 \end{array} \right.
- Graph
-
Input
2x+y+7z=4,3x-9y-z=2,x-8y-6z=-92 x+y+7 z=4, 3 x-9 y-z=2, x-8 y-6 z=-9
{[x=-(237)/(2)],[y=-(177)/(4)],[z=(163)/(4)]:}\left\{ \begin{array} {l} \,x = - \frac{237}{2} \\\,
y = - \frac{177}{4} \\\,
z = \frac{163}{4} \end{array} \right.
-
Input
x+y-z=-7,3x-y+z=-1,x-2y+4z=46x+y-z=-7, 3 x-y+z=-1, x-2 y+4 z=46
{[x=-2],[y=14],[z=19]:}\left\{ \begin{array} {l} \,x = -2 \\\,
y = 14 \\\,
z = 19 \end{array} \right.
-
Input
x+y=10,x^(2)+2=yx + y = 10, x^2 + 2 = y
{[x=-(1)/(2)+(sqrt33)/(2)","quad y=(21)/(2)-(sqrt33)/(2)],[x=-(sqrt33)/(2)-(1)/(2)","quad y=(sqrt33)/(2)+(21)/(2)]:}\left\{ \begin{array} {l} \,x = - \frac{1}{2} + \frac{\sqrt{33}}{2}\,,\quad y = \frac{21}{2} - \frac{\sqrt{33}}{2} \\\,
x = - \frac{\sqrt{33}}{2} - \frac{1}{2}\,,\quad y = \frac{\sqrt{33}}{2} + \frac{21}{2} \end{array} \right.
- Graph
-
Input
{:[-12 x+9y=7],[9x-12 y=6]:}\begin{aligned}
-12 x+9 y &=7 \\
9 x-12 y &=6
\end{aligned}
{[x=-(46)/(21)],[y=-(15)/(7)]:}\left\{ \begin{array} {l} \,x = - \frac{46}{21} \\\,
y = - \frac{15}{7} \end{array} \right.
- Graph
-
Input
{:[2x-y=5],[7x-3y=20]:}\begin{array}{c}
2 x-y=5 \\
7 x-3 y=20
\end{array}
{[x=5],[y=5]:}\left\{ \begin{array} {l} \,x = 5 \\\,
y = 5 \end{array} \right.
- Graph
-
Input
{[2x+5],[x^(2)+2]:}\left\{\begin{array}{l}
2 x+5 \\
x^{2}+2
\end{array}\right.
-
Input
{[x^(3)=y],[x^(2)+y^(2)=10],[y=2x]:}\left\{\begin{array}{ccc} x^3 = y \\ x^2 + y^2 = 10 \\ y = 2x \end{array}\right.
{[x=-sqrt2","quad y=-2sqrt2],[x=sqrt2","quad y=2sqrt2]:}\left\{ \begin{array} {l} \,x = - \sqrt{2}\,,\quad y = - 2 \sqrt{2} \\\,
x = \sqrt{2}\,,\quad y = 2 \sqrt{2} \end{array} \right.
- Graph
-
Input
{[x^(3)=y],[x^(2)+y^(2)=10],[y=sqrtx]:}\left\{\begin{array}{ccc} x^3 = y \\ x^2 + y^2 = 10 \\ y = \sqrt{x} \end{array}\right.
- Graph
-
Input
{[x^(2)+y=10],[y=5x]:}\left\{ \begin{array}{ccc} x^2 + y= 10 \\y = 5x\end{array}\right.
{[x=-(5)/(2)+(sqrt65)/(2)","quad y=-(25)/(2)+(5sqrt65)/(2)],[x=-(sqrt65)/(2)-(5)/(2)","quad y=-(5sqrt65)/(2)-(25)/(2)]:}\left\{ \begin{array} {l} \,x = - \frac{5}{2} + \frac{\sqrt{65}}{2}\,,\quad y = - \frac{25}{2} + \frac{5 \sqrt{65}}{2} \\\,
x = - \frac{\sqrt{65}}{2} - \frac{5}{2}\,,\quad y = - \frac{5 \sqrt{65}}{2} - \frac{25}{2} \end{array} \right.
- Graph
Limits
-
Input
lim_(x rarr256)((1)/(sqrtx-16)-(32)/(x-256))=\lim _{x \rightarrow 256}\left(\frac{1}{\sqrt{x}-16}-\frac{32}{x-256}\right)=
(1)/(32)\frac{1}{32}
-
Input
lim_(v rarr c)L_(o)sqrt(1-(v^(2))/(c^(2)))\lim _{v \rightarrow c} L_{o} \sqrt{1-\frac{v^{2}}{c^{2}}}
Function
-
Input
f(x)=x^(3//2)+x^(2//3)," solve for "f^(')(1)f(x)=x^{3 / 2}+x^{2 / 3}, \text { solve for } f^{\prime}(1)
(d)/(dx)f((x))|_({:x=1:})=(13)/(6)\left. \frac{d}{d x} f{\left(x \right)} \right|_{\substack{ x=1 }} = \frac{13}{6}
f(x)=x^((2)/(3))+x^((3)/(2))f{\left(x \right)} = x^{\frac{2}{3}} + x^{\frac{3}{2}}
-
Input
f(x)=x^(2)-x-1," solve for "f^(')(x)f(x)=x^{2}-x-1, \text { solve for } f^{\prime}(x)
(d)/(dx)f(x)=2x-1\frac{d}{d x} f{\left(x \right)} = 2 x - 1
f(x)=x^(2)-x-1f{\left(x \right)} = x^{2} - x - 1
Derivatives
-
Input
(d)/(dx)[(4e^(x)+7e^(-x))/(9)]\frac{d}{d x}\left[\frac{4 e^{x}+7 e^{-x}}{9}\right]
(4e^(x))/(9)-(7e^(-x))/(9)\frac{4 e^{x}}{9} - \frac{7 e^{- x}}{9}
-((4e^(2x))/(9)+(7)/(9))e^(-x)+(8e^(x))/(9)- \left(\frac{4 e^{2 x}}{9} + \frac{7}{9}\right) e^{- x} + \frac{8 e^{x}}{9}
Elementary
-
Input
sin(x)\sin(x)
sin (x)\sin{\left(x \right)}
{[(1)/(sec ((x-(pi)/(2))))],[(1)/(csc ((x)))],[(2cot (((x)/(2))))/(cot^(2)(((x)/(2)))+1)],[(2tan (((x)/(2))))/(tan^(2)(((x)/(2)))+1)],[cos (x-(pi)/(2))]:}\left\{ \begin{array} {l} \,\frac{1}{\sec{\left(x - \frac{\pi}{2} \right)}} \\\,
\frac{1}{\csc{\left(x \right)}} \\\,
\frac{2 \cot{\left(\frac{x}{2} \right)}}{\cot^{2}{\left(\frac{x}{2} \right)} + 1} \\\,
\frac{2 \tan{\left(\frac{x}{2} \right)}}{\tan^{2}{\left(\frac{x}{2} \right)} + 1} \\\,
\cos{\left(x - \frac{\pi}{2} \right)} \end{array} \right.
- Graph
Numericals
-
Input
|[2,0,2,4],[3,3,1,2],[0,1,3,1],[4,1,7,1]|\left|\begin{array}{llll}2 & 0 & 2 & 4 \\ 3 & 3 & 1 & 2 \\ 0 & 1 & 3 & 1 \\ 4 & 1 & 7 & 1\end{array}\right|
-176.0-176.0